R ‘

i
RE-ORDER no. &5 81 ‘

7 March 1964

IMAGE ANALYSIS

of
AREA-SCAN TELEVISION

This wotk was performed for the Jet Propulsion Laboratory,
California Institute of Technology, sponsored by the
National Aeronautics and Space Administration under
Contract NAS7-100.

General Precision, Inc.
Librascope Group
Glendale 1, California

| ©



Summary

CONTENTS

Description of Area-Scan Television

Scope of The Study

Criteria
4.1
4.2

4.3

Criteria for Judging the Quality of a Replica

Criteria for Judging Whether Weighting
Functions are Practically Realizable

Criteria for Judging the Relative System
Performance of Area-Scan Television and
Spot-Scan Television

General Forms of Weighting Functions Providing Perfect

Replicas
5.1

Sufficient Conditions on the Two-Dimensional
Spatial Line Spectra of The Weighting Functions
for Perfect Replication

Proof That No Weighting Function Can Satisfy
the Sufficient Conditions

Derivation of Less Restrictive Sufficient
Conditions

General Form of Physically Realizable Weighting
Functions Satisfying The First Set of Less Re-
strictive Conditions

Second Set of Less Restrictive Conditions

General Form of Physically Realizable Weighting
Functions Satisfying The Second Set of Less Re-
strictive Conditions

Alternative Form of Physically Realizable
Weighting Functions Satisfying The First Set of
Less Restrictive Conditions

Alternative Form of Physically Realizable
Weighting Functions Satisfying The Second Set of
Less Restrictive Conditions

Discussion of the General Forms of Weighting
Functions Providing Perfect Replicas

Specific Forms of Weighting-Function Elements (Trans-
missivity-Pattern Elements) and Quality of The Resulting

Replicas
6.1

The Quality Function

9



.
»

Page
6. 2 Quality Functions and Space-Frequency
Functions of Three Different Transmissivity-
Pattern Elements (Apertures) 6-6
6.3 Resolution 6-8
6.4 Contrast 6-9
6.5 Relative Total Intensity Range 6-9
6.6 Linearity With Respect To Intensity and Spatial
Distortion 6-10
Relative System Performance of Area-Scan and Spot Scan
Television 7-1
7.2 Spot-Scan System 7-1
7.2 Area-Scan System 7-10
Merits of Mechanically Scanning Apertures for Spot-Scan
Television 8-1
Relative Merits of Area-Scan and Spot-Scan Television 9.1



- e -l U TNy am S O M
!

Figure

ILLLUSTRATIONS

Area-Scan Television Principle

Spectral Pattern Satisfying Condition I (The '""Orthogonality"
Condition)

Transmissivity Pattern Satisfying the First Set of Less
Restrictive Conditions

Internal Periodicity of Transmissivity Pattern Satisfying
the Second Set of Less Restrictive Conditions

Page

2.1a

5.1l a

5.14a

5.23a



¢

4

1. SUMMARY

In the study described in this report we are concerned with the problem
of reproducing a two-dimensional image at a remote location by using a
novel method which we shall refer to as '"area-scan television''. This
method is described in Section 2. Very briefly, it uses a scanning aperture
pattern — at both the transmitter and the receiver — which consists of many
individual randomly-placé’d apertures which are illuminated simultaneously.
These aperture patterns z;re referred to in Sections 2 through 6 as trans-

missivity patterns,

The scope of the study is delineated in Section 3. In particular, the
study is restricted to black-and-white television. This restriction was
made to enable us to keep the costs of the study within the limits imposed
by the available funds; and not because area-scan techniques cannot be used
to provide multi-colored replicas. In fact, we believe this method to be,
as mentioned in Sections 8 and 9, particularly well-suited for providing such

replicas.

The criteria for judging (a) the quality of a replica, (b) the practical
realizability of the mechanically scanning aperture patterns employed in
area-scan television, and (c) the system performance of this type of

television, are described in Section 4.

We derive in Section 5 sufficient conditions for obtaining, in principle,
a ”perfeci:"1 replica. We show that these conditions cannot be satisfied by
physically realizable scanning-aperture patterns. We subsequently derive
four general forms of aperture patterns that provide, in principle, perfect
replicas by satisfying less restrictive sufficient conditions for perfect
replication. Single-spot line-scan television is shown to be a special case
of two of these general forms. The other two general forms provide two

possible mathematical models of aperture patterns for area-scan television.

The relative system performance of area-scan and single-spot line-

scan television — which we shall henceforth refer to simply as spot-scan

1This term is defined in Subsection 4.1
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television — is discussed in Section 7. The criterion chosen for judging this

performance is the replica signal-to-noise ratio as a function of the system

parameters listed in Subsection 4. 3.

The merits of spot-scan television using mechanically scanning apertures

are discussed in Section 8; and the relative merits of area-scan television

and spot-scan television are discussed in Section 9. Very briefly the principal

conclusions of these discussions are:

(1)

(2)

(3)

The instrumentation of a spot-scan system using a pair of
mechanically scanning apertures is simple and reliable. In
particular it requires no high-voltage supply and no sweep

circuits.

The signals emitted by an area-scan television transmitter
are secure; that is, a replica of the transmitted picture cannot
be reproduced by intercepting these signals if one does not

know exactly the form of the scanning aperture pattern used.

Area-scan television can be used, when the intensity of the
image to be transmitted is low, to improve the quality of the
received image by reducing the effect of the noise generated

in the low-level circuits of the transmitter. This improvement

can be achieved at the expense of an increase in video bandwidth.

Sections 2 through 4, and 8 through 9 are essentially self-contained and can

be read without referring to Sections 5 through 7.
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2. DESCRIPTION OF AREA-SCAN TELEVISION
In the study described in this report, we are concerned — as
already mentioned — with the problem of reproducing a two-dimensional

image at a remote location by using a novel method which we shall refer

to as '""area-scan television''. This method is described below.

The two-dimensional intensity I(x,y,t) of the image (see Figure 1)
is converted, effectively, to a point intensity IP(t) by performing, for

example optically, the transformation

a b
) = ] / L,y t) Wiad, ¥, €)dx dy, (2-1)
-a' -b

where Wl(x',y',t') is a real dimensionless transmissivity function used to
assign the "weight" Wl(x',y’,t') to the point (¥,y') of the image at the instant
t', and where the limits of integration determine the spatial boundaries
of the image to be reproduced. (This is assumed to be rectangular.)
The intensity IP(t') is in turn converted to an electrical signal S.I(t') by a

transducer performing the operation

ST(t‘) = CIJP(t'), (2-2)

where CT is a dimensional constant. If we express I{x,y,t') in watts/cm
and a',b' in centimeters, ]P must be expressed (because of equation (2-1)
in watts; and hence, if we express S(t') in volts, CT has the dimensions
of volts/watt. The signal SI.(t') is transmitted to a remote location where
the received signal, SR(t) is converted first, by a transducer, into a point
intensity and then optically into a uniform two-dimensional intensity dis-

tribution R.U(t) by performing the operation

R{t) = GSy(t), (2-3)

where the constant CRmust have the dimensions (watts/cmz)/volt if we
express %(t) in volts and RU(t) in watts/cmz. The uniform intensity
distribution is converted to a succession of, in general, non-uniform in-

tensity distributions R(x,y,tk) at instants b by performing the transformation
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Rixyy) = | ROWlxytdt, (2-4)
k-1

where WR(X,y,t) is a real dimensionless transmissivity function used to
assign the "weight" WR(x,y,t) to the uniform intensity distribution R.U(t) at

the point (x,y) at the instant t. In (2-4) the multiplication may, for example,
be carried out optically in which case the integration may be performed by
a photo-luminescent (phosphor) screen. We choose the interval of

integration

T2 6% | (2-3)

small enough for the intensity I(x,y,t) to change only insignificantly during

the corresponding time interval, (E(-T)-(tk-l-‘r) where
T 2 t-t (2-6)

is the propagation time between the transmitter and the receiverl. We

may therefore write, to a high degree of approximation,
I(x',y,t') = I(:d,y',tk_l-*r) for tk_1 <t < b (2-7)

We assume that the successive intensity distributions R(x,y,tk) obtained for
successive values of k are replicas of the corresponding intensity distri-
butions I(x’,y',tk_l-‘r), which are time-samples of the time-varying intensity
distribution I{¥,y',t-T) of the original image. The distributions R(x,y,tk)
provide a display of the original image at a remote location from this
image if the above assumption is correct. One of our major objectives in
this study is to discover whether area-scan television can be used to pro-

vide such replicas.

! The identify sign is used in the report to denote that an equation is true

by definition.



3 SCOPE OF THE STUDY

Very briefly, the general questions which we answer in the

present study are:

(a)

(b)

(c)

(d)

Do there exist physically realizable weighting functions
WI(x',y',t') and WR(xy,t) for which the reproduction of the
original image can be made to be, in principle, a perfect

replica of this image.

If such weighting functions exist, how fine a resolution
can one achieve with a replica obtained by using specific

forms of weighting functions.

What are the merits of spot-scan television using mechani-

cally scanning apertures.

What are the relative merits of area-scan television and

spot-scan television.

In the study, a number of restrictive assumptions are made and

the questions above are answered only for systems satisfying them.

(A)

(B)

(C)

(D)

(E)

Only a "monochromatic''l replica of the original image

is required.

The replica and the uniform intensity distribution RU(t)

have the same dimensions as the original image.

The weighting functions WI(x', y, t) and WR()gy,t) are instru-
mented by translating synchronized time-variant trans-

missivity patterns (aperture patterns) at a uniform velocity.

These patterns are assumed to be periodic in one direction

and to have a common period.

The transmissivity patterns of the two weighting functions

are identical.

1 Monochromatic in the sense of black and white conventional television;
and not in the sense of using light of only a single wavelength.
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The first assumption is made to enable us to keep the costs of
the study within the limits imposed by the available funds; and not because
the area-scan method cannot be used to provide multi-colored replicas.

In fact we believe that this method is particularly well-suited for providing

such replicas. The first assumption has already been implied in the des-

cription of area-scan television given earlier since no wavelength dependence

is shown in the operations used to form the replica. It is also implied in
the definition of a perfect replica given at the beginning of Subsection 4.1

below, because this definition does not require color matching.

The second assumption is a trivial one and is only made to

simplify the exposition.

The third and fourth assumptions are made in order to restrict
the analysis to the type of instrumentation which we believe to be the

simplest.

The fifth assumption is made because we believe that no ad-

vantages can be obtained by using two different types of weighting functions.

We do not, however, possess a rigorous proof of this statement.

3-2
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4, CRITERIA

4.1 Criteria for Judging the Quality of a Replica

We say that a replica of the original image is perfect if its
intensity distribution at time tk is identical to that of the original image
during the time interval

tk_l—T <t <t, -T. (4-1)

k
This condition is satisfied if the '"corresponding' two-dimensional spatial
line spectra of these distributions are identical. The term ''corresponding"
is used here to indicate that these line spectra are the coefficients of two-

dimensional Fourier series that have the same pair of fundamental periods.

We consider in the present report only physically realizable —
and hence bandlimited — images Hence the spatial line spectra of the
images considered, and their replicas, contain only a finite number of
non-zero spectral lines. Nevertheless, we shall express the various
functions with which we shall be concerned by Fourier series containing
an infinite number of terms; it should be understood, however, that only

terms corresponding to non-zero spectral lines are significant.

In practice replicas are never perfect, and we therefore need
criteria for judging their quality; that is, the fidelity with which they
represent the original image.

These criteria are:

(D Resolution

(II) Contrast

(III) Relative total intensity range

(IV) Linearity with respect to intensity

(V) Spatial distortion,

Resolution will be defined later in terms of the '"quality function'' discussed
in Subsection 6.1. This function is equivalent to the spread function used
in assessing the performance of conventional optical image-reproducing

systems.



4.2 Criteria for Judging Whether Weighting Functions are
Practically Realizable

The criteria used to determine whether weighting functions are
practically realizable are:
(1) The complexity and, in particular, the ''fineness" of the
transmissivity patterns used for the weighting functions.
(2) The overall length of these patterns.

(3) The speed with which these patterns must be moved.

4.3 Criteria for Judging the Relative System Performance of Area-
Scan Television and Spot-S5can Television

The criterion chosen for judging the system performance of spot-
scan television is the replica signal-to-noise ratio as a function of:

(1) video bandwidth

(2) integration interval

(3) noise originating in the low-level circuits of the tra.nsmitt:erl

(4) noise originating in the communication link and in the low-

level circuits of the receiver
(5) transmitter power
(6) the losses in the communication link arising from the inverse

square law, attenuation, and reflections.

The noise originating in the low-level circuits of the transmitter consists —
assuming a photosensor is used to detect the radiation from the image — of
photosensor noise and of noise in the subsequent preamplifier.



5. GENERAL FORMS OF WEIGHTING FUNCTIONS PROVIDING PERFECT

REPLICAS

5.1 Sufficient Conditions on the Two-Dimensional Spatial Line Spectra of

the Weighting Functions for Perfect Replication

We shall derive these conditions by requiring that the "corresponding'

spatial two-dimensional line spectrum of the replica be identical with that of

the original image. The conditions can be derived by representing the func-

tions I(x,y,t'), R(xyt), WI(x‘,y’,t') and W, (x,y,t) by four two-dimensional

Fourier series having the same pair of fundamental periods 2a and 2b along

the x and y-axes, respectively. We have1

i2mx Dy

Ieyht) = 9, 2 I (the 2a  2b
m=-® n=-®
® ® i2n(22+ 32
R(xyt) = Z Eﬁrs( =t 2
© o 1217( o )
Wty D Y Wilwe i
m=-® n=-
12'rr( + 2
WR(X,Y,t) = Z-” S—EQMR)(t) 2 Zb ,
where
a b . mx! n
1 ' -121T(—23-'—+2b)
Imn(t’) ZE-J. J.I(x',y',t)e dx' dy
-a -b
a b . X , S
-i2m{s=— + a4\
Rodo =gpl [Regwe T Faxay
-a -b
a b mx n
-i2w(5—+ )
e - e T e oy
-a -b

1 See, for example, Pierre Mertz and Frank Gray

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

't



(R) ey i2n(z5 + 73
Wrs(t) = mj JWR(x,y,t)e dx dy. (5-8)
-a -b

Actually the Fourier series (5-1) does not represent just the function I(x,y,t');
it also represents the doubly-infinite set of identical functions obtained by
displacing the original function (I(x,y\t') through all integral multiples of 2a in
the x-direction and of 2b in the y-direction. Hence the line spectrum (5-5)
also represents both I(x,y,t') and the doubly-infinite set of functions specified
above. Similar statements apply to equations (5-2) through (5-4) and (5-6)
through (5-8). In equations (5-5) through (5-8) the lengths a and b must be

chosen to satisfy the conditions
a=za, b2V, (5-9a), (5-9b)

where we have assumed, in accordance with assumption (B), page 3-1 that
the dimensions of the replica and the uniform intensity distribution RU(t) have
the same dimensions (2a', 2b') as the original image. These conditions en-
sure that only vune member of the four doubly-infinite sets of functions repre-
sented by equations (5-5) through (5-8) is used by restricting the illumination

to at most only one member of each of these four sets.

We are not concerned here with errors in reproduction arising from

imperfections in the transmission channel, and shall therefore assume that

Sgit) = CpgSdt-7), (5-10)

where the constant CTR is a dimensionless scale factor smaller than unity
which represents the fraction of the transmitted power intercepted at the

receiver, and where T is the propagation time.

1f we substitute in (5-6) the expression for R(x,y,tk) given by (2-4),

we obtain

t 12-rr( f—X)
dt) = 4abj f{f Rift) W (X’Y’t)dt} 22 Zbdx dy, (5-11)
sa-b

or, interchanging the order of integration,



b 2 b -i2m(z=+ 5Y)
R cms] Rol] [oeemne T Paxayfe,
tk-l -a -b
which we may in turn, using (5-8), write as
%
Brs(tk) = J. Pi](t)w(rlz)(t)dt'
S-1
Now, from (2-1) and (2-2), we obtain
a b
sfe)  =cp [ [Jueyerweyea ay
-a -b

and, from (5-10) and (2-3)

R{t) = CCrgSyle-).

(5-12)

(5-13)

(5-14)

(5-15)

Hence, since (t-T) is equal to t', (see 2-6), it follows from (5-14) and (5-15)

that
a b

Rft) = GCrpCr | fI()d,y’,t-T)WI(x,y‘,t-T)d:d dy'.

-a' -b

Substituting this expression for R'U(t) in (5-13), we obtain

tk a b
R =cf { ] [eyt-nwpys-na ay b #Rkoar
fk—l -a -b
if we remember (5-9), and that
I(x,y,t') =z 0
for

Ix1>a', 1 ylI>b';

and if we write

C = QR 1%r

(5-16)

(5-17)

(5-18)

(5-19)

(5-20)




We now express I(x,y,t-T) in (5-17) in terms of its two-dimensional

line spectrum by using (5-1) and get

e ny‘)
A cj{j jzzz(tr)

® W,y t-max ay [hRkgat,
T (5-21)

which, may be written, in the form

12‘rr( 5

ny')

1ZTr(
Zb Wl(x‘,y',t—‘r)dx' dy‘}h'(rP;)(t)dt

mn(t -T)e

BRI :

m=-® n=-°°

m'——w

(5-22)

by interchanging the order of the summations and integrations. Furthermore,

because of Assumption (2-7), we also have
Imn(t--r) = Imn(tk_l-r) for b1 <t < b (5-23)

Hence (5-22) may be written in the form

1Z‘ﬂ(mx' ny‘)
R (t)=C Z ZI (. l--r)f {j fwl(x'y't e %2 2bga dy*}dtW‘R)(t)dt
g 7@ b (5-24)
or, because of (5-7), in the form
b
R () = 4ame_E—w ; I (4 ‘r){( WD e-nnBhoas, (5-25)
1

o (1) . Iy,
where ”mn (t-7) denotes the complex conjugate of Wmn(t 7).

By examining this expression — which relates the space spectrum
of the replica R(x,y,tk) (at time tk) to that of the original image I(x,y,tk_l-T) -
(at the corresponding time (tk_l-T) — we can derive sufficient conditions
which the weighting functions must satisfy, for this replica to be perfect.

These conditions are
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I WD nyw®
mn Irs
k-1

for all tk and for

Ytyat = o (5-26a)

m # r and/or n £ s; (5-26Db)

and

i

f Wg:(t”'wg:)(t)dt = 4a1bC (5-27a)
be-1

for all fk and for

m=1,n=s. (5-27b)

The first condition ensures that only one spectral line of the original image
I(x¢,y,t') contributes to any one spectral line of the replica. The second con-
dition ensures that corresponding spectral lines of the original image and the
replica are of equal intensity. We shall refer to these two conditions — in
all cases considered in this report — as Conditions I and II respectively.
They can be expressed in more compact form by using Kronecker deltas.

We have
%
(I)% (R) _
f Wmn(t-T)Wrs(t)dt =

b1

which contains both the above conditions in a single equation.

1
4abC 6rru'ﬁrs’ (5-28)

When Conditions I and'II are satisfied, we obtain from (5-25)
Rrs(tk) = Irs(tk-l-T) (5-29)

for all ts that is, the space spectra of the successive replicas are identical to
those of the corresponding original images. Hence we see that these replicas
are, in effect, perfect reproductions of these images when Conditions I and 11

are satisfied.

5-5
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Conditions (5-26) and (5-27) have been derived by using only the
restrictive Assumptions (A) and (B) on page 3.1, They therefore apply to the
most general form of weighting functions for which the Fourier series provide
a valid representation of these functions and of the original image and its
replica in the intervals 2aand 2b. We can distinguish two methods of instru-

menting such functions.

(1) The transmissivity patterns are fixed with respect to the origi-
nal image I(¥,y,t') and the uniform intensity R.U(t), but vary with
time1 .

(2) The transmissivity patterns are moved across {scan)

I(<,y,t') and R.U(t), but are time-invariant.

We shall, in accordance with Assumption C, restrict ourselves to
the second method. In this case the distance traversed by the transmissivity

patterns during the integration interval T must not be less than 2a', that is,
vT 2 22!, (5-30)

where v is the speed of translation of the two transmissivity patterns cor-
responding to the weighting functions WI(x',y’,t') and WR(x,y,t). These functions
now take the form Wl(x’ -vt,y') and WR(x-vt,y), respectively. Expression (5-8)

for W(rlz)(t) now becomes

a b . X Sy,
w Ry = _I_J' fw (x-vty)e et Zb)dx dy (5-31)
rs Zab R y ’
-a -b
which, if we make the change of variable
X = x-vt (5-32)

and introduce Assumption (D), can in turn be written as

a-vt b L [Zr ﬂ—‘
W(R)(t) -1 j Jw (X,y)e gt + Zdex dy (5-33)
rs 4ab RY y
-a-vt -b
or
rv_.a b .5 X | sy
-i2ms—t -i2m(=— + =)
(R),, _ 1 ~*T23 Za ' 2b
W R = e [ [wxpe dX dy (5-34)
-a -b

rThat is, either the shape or degree of transparency of these patterns varies

with time.

5-6




We have changed in (5-34) the limits of integration of the dummy variable X

without changing the value of the integral because

WR(X,y) is by Assumption D,

periodic in X, and because the exponential with imaginary exponent is, by

definition, periodic in X.

We now write (5-34) in the form

121r LAA
W(R)(t) W(R) 2a .
rs
where
a b s )
-1217(
9 T s 5 By

-a -b

or, since X is only a dummy variable,

om(EX 4 3Y
121'r(Za + Zb)

w0t I
Wrs e vy (x,y)e dx dy.
-a -b
Similarly,
1211’ (t T)

W%y = WD %en = W%

or

mv

—121\' 1211' t

2 T

mn

W%y < %) -

Thus Conditions I and II above now take the form

Y o v
[ AR ETZE
mn rs
Y1
for
m # r and/or n £ s,
and

(5-35)

(5-36a)

(5-36b)

(5-37)

(5-38)

(5-39a)

(5-39b)




mv

b v i2n 2V 7
i2m=—{m-r)t 2a
(1)*,(R) 2a dt _ e
f WmnWrse T 4abC (5-402)
b1
for
m=randn-=s (5-40b)
Now the equation
tk i2wqgt
j e dt = 0 (5-41a)
b1
is true whenever
q= _K s (5-41Db)
C %

where K is a real non-zero integer; that is, whenever the integration interval

is equal to an integral number of periods of the integrand. Also

x i2nqt
j e dt:tk-fk—l =T (5-42a)
-1
whenever
q=0. (5-42b)

The integrals in (5-39a) and (5-40a) have the form of the integral in (5-41a)
and (5-42a) if

q = 3=(m-r). (5-43)

If we choose

2a = v(tk-tk_l) =vT, (5-44)
we have
q Z 55(m-r) = {?t;ri : (5-45)
5-8

ol



Relations (5-39) and {(5-40) now become

rn rs (5-46a)
for
n# s, (5-46Db)
and
i2m—T
wDFR) _ e 22 (5-47a)
rn rs 4abCT
for
n=s. (5-47b)

Equations (5-46) and (5-47) are the forms taken by Conditions I and II in the
case of moving invariant transmissivity patterns. They can also be ex-

pressed by the single equation

ian—‘;r
(*,AR) _ e
Wrn Wrs T "4abCT 6ns' (5-48)

We now consider the case where (a) the transmissivity pattern of
the two weighting functions are identical and (b) the motions of these two

patterns are synchronized so that

Wo(x-vty) = Wix! -vie+7h, v). (5-49)

It follows, since from (2-6)
t=t-T, / (5-50)
that

WR(x—Vt,y) = Wi(x' -vt,y'). {5-51)

Hence we have, instead of equations (5-37) and (5-38),

iZﬁ———th
(I)% o ADE (L) 2a
Wmn(t'+T) = Wmn(t) =W e . (5-52)




Therefore the conditions, corresponding to conditions (5-46) and (5-47) — when

the weighting functions are synchronized according te (5-49) — are
W D#R) _ g (5-53a)
rn rs
for
n#s (5-53b).
and
(1)* (R) l lZ |
W W = Ia5CT (5-54a)
for
n= s, (5-54b)
where
w_ = wB Al (5-55)
rs rs rs

Conditions I and II can also in this case be represented by the single equation

W DHAR)

rn rs

2, 1
Gné T 4abCT 6ns' (5-56)

rs

Note that these conditions also apply to the particular case when 2b is equal
to 2b'.

Conditions {5-53) and (5-54) are sufficient to ensure that the weighting

functions provide perfect replication under the restrictions imposed by Assump-

tions (A) through (E). However — as we shall see later — they are not

necessary conditions.
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5.2 Proof That No Weighting Function Can Satisfy the Sufficient Conditions

We now seek to discover whether there exist spatial line spectra that

satisfy conditions (5-53) and (5-54).

The quantities ng)n and Wilz) are the (time-invariant) line spectra of
the transmissivity patterns of the weighting functions Wl(x' -vt,y') and WR(x-vt,y).
We note that the first subscripts of these two line spectra are the same in
equations (5-53) and (5-54). Thus these conditions impose no constraints on
the relation between transmissivity-pattern line spectra whose first sub-

scripts differ.

To discover the implications of the constraints imposed by condition
(5-53) on ng)n and sz) when their first subscripts are the same (i.e. when
m=r), let, for example, the second transmissivity pattern have a non-zero

spectral line W(rRsi for the specific values
1

r:l‘l S:Sl. (5-57)
*
Then, we note from condition (5-53) that all the spectral lines W(rl)s — and
1
hence also all W(rl) —, must be zero if they have the same first subscript n

s
1
and a different second subscript s. Since the two line spectra are equal

(see 5-55), it follows that at most one spectral line with any given first sub-

script (say r = rl) can be non-zero.

We next note that condition {5-54) requires the square of the absolute

value of two spectral lines with the same subscripts, say

r =1 and s = s (5-58)

to be non-zero and equal to a (real) number which is independent of the sub-
scripts r and s. Typical line spectra satisfying condition (5-53) are shown

in Figure Z2a.

Clearly conditions (5-53) and (5-54) cannot both be fulfilled, except
for the trivial case when all spectral lines are zero. In effect, the first

condition requires some spectral lines to be zero; and this violates the

second condition. We shall sometimes refer to the first condition as the

"orthogonality'' condition.

s
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We note, parenthetically, that the conditions for perfect replication
formulated in Subsection 2.1 cannot be satisfied even when the two trans-
missivity patterns are different. In effect, a similar argument to that given
for condition (5-53) shows that condition (5-46) requires some spectral lines
of at least one of the two transmissivity patterns to be zero. Consequently,
some of the products Wils)>kWilz) must also be zero; and this violates condition
(5-47). Typical line spectra satisfying condition (5-46) are shown in

Figure 2b.

5.3 Derivation of L.ess Restrictive Sufficient Conditions

As mentioned in Subsection 5.1, conditions (5-53) and (5-54) are
sufficient but not necessary conditions for perfect replication under Assump-
tions (A) through (E). These conditions are not necessary because they

were derived by:

(2) representing the four functions I(x,y,t'), WI(x',y',t'), WR(x,y,t), and
R(x,v,t), and hence also their transmissivity patterns, in terms

of Fourier series.

(b) choosing {see (5-44)} the '"space integration interval'' vT equal
to the fundamental (space) period 2a — in the x-direction — of

P 1
the transmissivity patterns

(c) choosing, in the x-direction, the basic interval (of expansion)
of the four two-dimensional Fourier series equal to the funda-
mental period 2a of the transmissivity pattern in this direction,

and by

(d) choosing not to take advantage of the possibility that the weighting

functions can be required to have 'internal periodicities', as

described later.

! We have hitherto used the symbol 2a to denote both the fundamental period

of the moving transmissivity patterns and the interval of expansion of the
four two-dimensional Fourier series. We shall in the future have occasion
to use Fourier series expansion with basic intervals different from the
fundamental period of the moving transmissivity patterns. The symbol
2a'' will be used for such intervals.
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These choices are equivalent to additional restrictive assumptions. The im-
plications of assumptions (b) and (c) are now discussed in detail; some of the

implications of the other assumptions are discussed in other subsections.

The functions I(x,y,t') and R(x,y,t) are uniquely specified in the interval
2a along the x-axis and the interval 2b along the y-axis by the Fourier series
(5-1) and (5-2) because we have chosen the fundamental periods of each of
these two series equal to the same two intervals 2a and 2b. However, we only
need these functions to be specified in the intervals 2a' and 2P, and hence we
could also specify I{¥,y,t') and R(x,y,t}) by Fourier series with fundamental
periods equal to 2a' and 2b'. Since intensity distributions are in practice
always bandlimited, it follows that fewer spectral lines (Fourier coefficients)

are required to determine uniquely I(x,y,t') and R(x,y,t) when

a=a and b=1 (5-59)
than when

a>a and b >1, (5-60)

Further, because of the assumptions made under (b) and (c) above,
it follows that the distance traversed by the transmissivity patterns during
the interval of integration T is equal to the chosen common fundamental

period, 2a, for the four functions I{(x,y,t'), R(xyt), Wl(x',y’,t'), and WR(x,y,t).
Consequently, if we

(1) choose 2a larger than 2a', we overspecify the functions I(x,y't')

and R(x,y,t), and if we,

(2) choose 2a equal to 22', we limit the distance traversed by the
transmissivity patterns during integration to the common width

2a' of the original image and its replica.

The above discussion suggests that we should consider the possibility
of obtaining perfect replicas by using weighting functions WI(X' -vt,¥') and
WR(x-vt,y) having transmissivity patterns Wl(x',y') and WR(x,y) formed with sets

of patterns whose members have the following properties:

(1) Each member Ml,j(x',y’) and MR,k(X’Y) of Wl(x',y’) and WR(x,y)

respectively, has a length 2a'" and a width 2V and can therefore

5-13
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be represented by a Fourier series with the same fundamental
periods 2a' and 2b'. This corresponds to removing condition (c).

(2) The patterns MLJ.(x',y‘) and MR,k(X’Y) are the same when j is equal

to k.1

Because of {2) above, we may therefore write
M, (X, =M = M{x, =M . 5-61
LJ( y') R}xy) J( y) j(X,Y) ( )

The transmissivity patterns Wl(x',y') and WR(x,y) are formed by using
a number, say J, of member-patterns MJ(x',y‘) and MJ.(x,y), respectively, with
common boundaries parallel to the y-axis (see Figure 3). We shall refer to
the two former transmissivity patterns as W-patterns and to the two latter
transmissivity patterns as M-patterns. The transparent areas of two adja-
cent M-patterns are separated by a distance 2a' to ensure that a transparent
area of one such member is not illuminated at the same time as that of an

adjacent member. FEach M-pattern has a length 2a'" and a width 2b', where
2a'" = 2a' + de (5-62)
with

d =4d (5-63)

where q is the length of the region containing transparent areas and de is the
excess length of M-patterns over the length, 2a', of the cormmon aperture of
the original image and its replica. The integration interval T is related to

2a' and to the speed v of translation by
2a'"J = vT; (5-64)

and the replica obtained at the end of this interval is — since the operations
are linear — the sum of the successive replicas Rj(x,y,tk) obtained by moving
the corresponding pair of patterns Mj(x',y') and Mj(x,y) across the original
image I(x’,y‘,tk_l) and the uniform illumination RU(tk); that is

1 We may attribute this property to the patterns MLJ(x',y') and MR k,(x,y)

because by assumption, the patterns Wi(x',y') and WR(x,y) are the same.
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Rixyt) = ZRj(x,Y,tk)- (5-65)
j=1

*
The expressions for W(nll)n(t') and W(rlz)(t) given by (5-38) and (5-35)
are the particular forms taken by the weighting functions when they are in-
strumented by moving (translating) time-invariant W-patterns. By using

these expressions in (5-25), we obtain

_"mv i2mss (m-r)t
_ D% (R) Za o
R_(t) = 4abC Z ZI (b -Tle wiPw e dt.
m==-"n=—=x
Ge-1 (5-66)
But, because of (5-41) through (5-45),
k iZnZl(m-r)t
[ e 2 dt = T6 (5-67)
mr
b1
and hence
) . -i2nsT, (D%,R)
R {t) = 4abCTn:Z_:ern(tk_1-T ww ), (5-68)

The synchronization of the weighting functions may be chosen (see equations
(5-49) through (5-52) so as to eliminate the exponential factor in (5-68). 2

We shall therefore write

R_(8) = 4abCT2I(tk r)w(rlg ‘R). (5-69)

This is true even if the transmissivity patterns of the two weighting
functions are different.
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Because the separation between transparent areas of any two adjacent
M-patterns has been chosen large enough for light to get through only one M-
pattern at any given time, we can assume that each M-pattern is part of a
periodic pattern in the x-direction consisting of contiguous identical patterns,
and that we use only one member of each such periodic pattern in forming the
replica R_(x,y,tk) Let R.(x,y,tk) be the contribution to R(x,y,tk) obtained by moving
a pair of identical M-patterns across the original image I(x,y,t) and the uni-
form illumination Rdt). Then, because we may assume each M-pattern to be
a single period of a doubly-periodic pattern, we may, by analogy with (5-66)
(which holds when the basic interval (of expansion) 2a for all four two-
dimensional Fourier series is equal to the fundamental period of the trans-

missivity patternsz) write
= 134! (I)° R)
Py rdl) = 420 CTy ZI -1~ J.rnM(J,rs’ (5-70)

I R . .
where Hj,rs(tk)’ Mg’zn, and M§,r)s represent the spatial line spectra of Rj(x,y,tk),

MJ(I)(f,y'), and Mj(R)(x,y), respectively, and of their corresponding three
doubly-infinite sets of identical functions obtained by displacing the original
functions through all integral multiple values of 2a'" in the x-direction and of

2b in the y-direction; and where

T
TJ =7 (5-71)

It follows from (5-65) — since Fourier series transforms are linear —, that
J

A dt) = 27 L 46 (5-72)
j=1

Consequently, substituting in this relation the expression of ]i’ (tk) given

by (5-70), we obtain (at the instant fk)

wD*y(R)
— 1
R_{4) = 4a"BCT, Z It T)E i (5-73)
To obtain a perfect replica we must have

Rode) = L (4 ,-7), (5-74)
and this relation is true if

2 Note that, although the fundamental period of individual M-patterns is as-

sumed (for the purpose of expansion) to be 2a", the fundamental period of
the W-patterns is 2a.
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J
ZMslr);MgP;)s =0 (5-75a)
j=1
for
nts, (5-75b)
and if
J J
POUATPIRS 3 T
j=1 j=1
for
n=s. (5-76b)

Conditions (5-75) and (5-76) correspond to conditions (5-53) and (5-54) in

the case of the Mj-patterns. They can also be expressed by a single equation,

that is, by
J
(I)*,,(R) _ 1
Z:M',rnMj,rs - 4a"b'CTJ 6nS' (5-77)
J=1

These conditions for the M-patterns are less restrictive than those
for the W-patterns because the former conditions impose only a single condi-

tion on the sum of the M-patterns and not on each individual M-pattern.
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5.4 General Form of Physically Realizable Weighting Functions Satisfying
the First Set of Less Restrictive Conditions

We shall now show that there exist M-patterns which satisfy the
conditions (5-75) and (5-76) if — asis always true in practice — the relevant
functions are bandlimited. To this end, we consider the case when the members
M(x,‘y') and M.(x,y) of WI(X',Y) and W (x,y), respectively, consist of identical
transmlsswlty patterns that are displaced successively through distance 2b'/J

parallel to the direction normal to the velocity of v of translation. That is, we

write
2b .
Mj(X',Y’) = M(X',y'-JJ—) (j=1,2,...7) (5-78)
and
.2b .
Mj(X,Y) = M(X,Y‘JT) (j=1,2,...7) (5-79)
It follows that the spatial line spectrum Mj mn of either of these functions is
given by
iznfy 5 -iemy
M, =M e =M e (5-80)
J,mn mn mn

We first show that a W-pattern consisting of J such M-patterns

satisfies condition (5-75).
Because

J J ., .n-s

SAEARY gy eI (5-81)
jyrn j,rs rn rs

j=1 j=1

and because

J 1211'_] _S

Ze -0 | (5-82a)

j=

for

n # s+KJ (5-82b)
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where K is an integer or zero, it follows that condition (5-75) is identically
satisfied for all such values of n. We therefore need only consider whether

this condition can be satisfied for values of n given by
n = s+KJ (K # 0). (5-83)

We shall now prove that (5-75) can be satisfied for such values of n
provided the functions I{x,y'), M(x,y'), and M(xy) are bandlimited in a direction
normal to the velocity v of translation. (These functions need not be band-

limited in a direction parallel to v.) Let

I =0 for Inl >N (5-84)
mn
and
Mrs =0 for ist > S, (5-85)

where N and S are positive integers. Since physically realizable functions
are always effectively bandlimited, there always exist an N and S for which
these assumptions are true. (A necesshry condition for the original image

I(x’,y',tk) not to be degraded is that

S =2N.) (5-86)
Then, if

J >285, (5-87)
condition (5-75) is always satisfied because, on account of relation (5-83),
either

Isl >S (5-88a)
and/or

Inl >S (5-88b)
for all

K £ 0. (5-88c¢)

Hence at least one of the two factors M:n and Mrs in (5-81) vanishes, and

consequently condition (5-75) is satisfied.
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Condition (5-87) was obtained by trying to satisfy condition (5-75).

If, however, note that the weaker condition1
J > N+S (5-89)

is sufficient to ensure perfect replication when the M-patterns have the

general form given by (5-78) and (5-79). We show them as follows.
Because of (5-84), we are interested only in cases when
Inf <N. (5-90)
In these cases, since from (5-83)
s-n = -KJ (5-91)
and consequently
Is-nl = {KJI, (5-92)

it follows that

Is-nl > N+S (5-93)
when

J >N+4S and K # 0. (5-89)
But

Is-nl <}sl+Inl,

and therefore, using (5-93),

N+S < lIs-nl <lIsl+Inl (5-94)
so that

N+S <[Is|+ in] (5-95)
or

Is| >N+S -nl. (5-96)

Moreover, from (5-90)
N-lhl = 0, (5-97)

so that, substituting in (5-96), we obtain

Compared to condition (5-84).
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Isl >N+S -Inl 2 S. (5-98)
or
Isl > s. (5-99)

For values of S satisfying this last inequality, all the terms on the right-hand
side of (5-73) vanish and consequently condition (5-89) is in fact sufficient to

ensure perfect replication.

We note by examining (5-73) that if the resolution of the integrating

screen, on which the replica is displayed, is limited so that

Rrs =0 for s} > 8, (5-100)

the same value of J will ensure that a spectral line of the original image
contributes only to the proper spectral line of the replica. This follows by
an argument similar to that used above since the limited resolution of the
integrating screen has an effect equivalent to that of the limited bandwidth
ot MBlxy).

We next note that

J n-s
121r_]——-
Ze =7 (5-101a)
j=1
for
n-=s, (5-101b)

so that, because of (5-81) and (5-71), condition (5-76) becomes

(I)* (R) |2 _ 1
Mrn - IMrs T 4a"pCT (5-102a)

for

n = s. (5-102b)

This condition can always be satisfied, in principle, provided the original

image is bandlimited, that is provided
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I =0 (5-103a)
mn

for
m >M and/or n >N, (5-103Db)

where M and N are finite positive integers. It can also always be satisfied in
practice for all spectral lines of interest, that is, for all spectral lines Imn
of a physically relizable image that contain significant intensity. This subject

is discussed in detail in Section 6.
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5.5 Second Set of Less Restrictive Conditions

In Subsection 5.3 we derived less restrictive conditions for the
transmissivity patterns of the weighting functions than those derived in Sub-
section 5.1. This was achieved by removing the restrictive assumption (c)
given in Subsection 5.2. We now seek to discover an alternative set of less
restrictive conditions on the transmissivity patterns by removing the restric-

tive assumption (d).

We choose

(1) the basic intervals (of expansion) of the Fourier series
representing the original image, its replica, and the

transmissivity patterns, equal

(i) in the x-direction, to the fundamental period 2a of
these transmissivity patterns in this direction, and

equal

(ii) in the y-direction, to the width 2b' of the original

image and its replica.
(2) the basic interval 2a equal to vT;

(3) internal periodicities for the transmissivity patterns in
directions not parallel to the x-axis and the y-axis such
(see Figure 4) that their fundamental periods have x and
y-components equal to 2a(a'/a) and 2b(a'/a), respectively,
while retaining periodicities with a fundamental perio&
equal to vT in the x-direction and a2 fundamental period

equal to 2V in the y-direction.
(4) the product vT so that the ratio a'/a is an integer J.
or

r+n

-i2w

wdDe I - ) (5-104b)
rrn rn

5-23



*SUOTJIPUON) 9AI}O1I}S9Y S8 Jo 388 puodag ayj Jurdysizes
urajyeg Ajiarsstwisuea] Jo A3101polaag [eUIdU] ‘' sandr g




3

and

®. 2T R)
w\le =W ;

Trs Trs

(5-105)

We now assume that I(x,y,t') and R(x,y,t) contain the same internal
periodicities inside the region delineated by the basic intervals 2a and 2V.
This assumption, although it in no way affects the form of these functions

inside the aperture bounded by
x=+4a and y=+1, (5-106)
does allow one to represent the original image, its replica, and the trans-

missivity patterns, in terms of the same spectral lines. It also allows us to

write, by analogy with (5-94) and (5-95),

.5 T+n
-i2m 5]
I e =7 (5-107)
n rn
and
-ian;s
AR e =R . (5-108)
rs rs
Because
_iz“r}-n
e =1 ’ (5-109)
only for
r+n _
7= K1 . (5-110)

and because

—iZ,'n'r-'—S
e 3 =1 (5-111)
only for
r+s _
7 = KZ’ (5-112)

where K1 and K2 are integers, it follows that we need only consider the

values of n and s for which

J,D



n =K1J-r (5-113)

and

s :Kz]-r, (5-114)

respectively., This is true because all other spectral lines vanish. That is,
the choice of internal periodicity, which leads to equations (5-104) through
(5-105), requires that all spectral lines vanish except those for which the

exponential factorsare equal to unity — that is, those for which K, and K

1 2
are integers. Consequently {5-69) becomes
3 (1)* (R)
]?r’Kz]' ‘I‘(tk) = 4ab'CTI<l;mIr;K1J -r(tk-l-T) WI',KIJ -rWr,KzI-r, (5_1 1 5)

From equation (5-115), it is easy to derive a sufficient condition on
the weighting function spectra for perfect replication, namely
KK,
w = e -
Wr,KzI-r r,KjJ' -r 4ab'CT ° (5-116)

As in Subsection 5.4, if

I =0 for n >N (5-117)
mn

and
Mrs =0 for s >SS 2N, (5-118)

the orthogonality condition can be satisfied by choosing
J >28S. (5.—119)
The argument leading to the weaker condition
J >N+S (5-120)
also applies, and so do the comments concerning an integrating screen of

limited resolution. It follows that, when J satisfies condition (5-120),

all the terms in (5-115) vanish except those for which both K1 and K. are

2
zero. Consequently, (5-115) now becomes
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: h(l)* (R)
= \ - 4 -
Rr’_ () = 4ab'CT r,-r“i(-l 7) r’_rWr,_r, (5-121)
and hence the condition for a perfect replica is
(D*AR) _ l IZ =1
Yotz or = "o xl = TweT (5-122)

We note that no condition corresponding to the '"orthogonality' requirement
expressed by Condition I is necessary. We have, in effect succeeded in

representing the functions I(x,y\,t'), Wl(x',y’,t'), WR(x,y,t), and R(x,y,t), in such
a way that the only non-zero spectral lines lie on a single '"diagonal'' line in

the spectral domain.
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5.6 General Form of Physically Realizable Weighting Functions
Satisiying the Second Set of Less Restrictive Conditions

Let M(x,y) and

.2 .2
Mixy) = M{x-jF » y-i7-) (5-123)

be the fundamental functions from which we construct the transmissivity

patterns
J
Wy = 3 Moey) (5-124a)
j=1
and
J
Whksy) =3 Mexy) (5-125b)
j=1
of length
2a = vT (5-126)

and width 2b'. Hence the spatial spectra of these two functions are both given

by expressions of the form

W =M e T (5-127)

where Mrs represents a Fourier series expansion of M(x,y) over the intervals
2a = vT (5-128)

(and 2b equal 2b'), and not over the intervals

2am = V_f_ ) (5-129)
Hence
s " 0 for s # KJ-r (5-130)
and
W =JM for s = KJ-r, (5-131)
rs Trs .
5=27



where K is an integer. Consequently the only non-zero terms of Wrs are

JM

Wr,KJ-r - r,KJ-r; (5-132)

and if upper limits are placed on the spectral lines, as discussed in the

previous subsection, the only non-zero terms are

2

74 ;= JM (5-133)

r,-1r’

It therefore follows from (5-109) that the condition for a perfect replica is

21
Mr,-r' T 4abCTJT -

ot
“©

M (5-134)

r,-r I,-T

This condition can always be satisfied for physically realizable functions.

Similar comments to those made at the end of Subsection 5. 4 apply.

We have thus found that physically realizable weighting functions
exist that consist of patterns Mj(x,y) which need not contain opaque regions of
length de to prevent light from illuminating transparent portions of two adja-
cent patterns simultaneously. In other words, we have proved that there exist
transmissivity patterns consisting of transparent areas — as well as of a

single transparent spot — that provide perfect replicas.
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5.7 Alternative Form of Physically Realizable Weighting Functions

Satisfying the First Set of Less Restrictive Conditions

We return, now, to the situation described in 5.3 above, where

W(x,y) consists of a set of patterns Mj(x,y) with the several member patterns

of the set separated (in the x-direction) by opaque regions of length 2a' so

that there is no interaction between different member patterns.

basis, we derived the condition

J 5
M(I)*M(R) - ns

jrn jrs 4a”b‘CT:‘r
j=1

On this

(5-135)

In 5.4, we described a set of patterns I\/I.J(x,y) which satisfy this

condition. We now describe another set. (It is convenient, at this point,

to drop the distinction between MIJ and MRJ') Let

K
Mj(x,y) = kz:lek(x,y),

where
ij(X,Y) = P(x‘gjk: Y'an)

Then, expanding P(x,y) over the region 2a' by 2V,

mé. nn.

. k k

'1217( ZaJ” + zél )

jkmn T mnt
and

meg. nn,
. ik k
-1217(——2a” + 5t

K K
Mjmn - Eﬁkmn - Pmnz:e
k=1 k=1

(5-136)

(5-137)

(5-138)

(5-139)

We now suppose that the 2JK quantities gjk and njk are statistically

independent of each other, and that

(a) the quantities gjk are randomly distributed over the interval

from -a' to +a'', having uniform density with respect to j and

k, and
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(b) the quantities njk are randofnly distributed over the interval

from -b to +b', having uniform density with respect to j and k.

Now let
K . m%k n ik
'12“( 2 [ Zby )
Ze = Ejmn’ (5-140)
k=1
so that
=P E (5-141)
jmn mn jmn
and
3 % *
MM =P P E E . (5-142)
jrnjrs rnrs jro jrs
We now observe that
E:joo = K. (5-143)

For the general case %mn’ we can estimate <h=:jmn|2>’ the "expected
value of'' lEjmnlz’ on a statistical basis. If K is large, the standard de-

viation of the estimate will be small compared to the estimate itself. We

have
K & ok ik e
<IE |Z> _ z IZTT( Zall' + 'Zbl ) Ee -i2m ( 33 o + Y )
jmn - €
k=1 k=1
EEE P
k=1 k'=1
- Z Z 2a Zb' . (5-144)
k=1kK-=

There are K separate terms in the double sum for which

K = k. (5-145)
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Each of these reduces to unity. The remaining terms, of which there are

(KZ-K), each take the form

m mé§, nmn. nmn.
21— LI ZaJ,k' i2m zﬂ'k iz zg'k>
e e e e , KO£ k.

Since the factors are statistically independent, the expected value of this

product is simply

(58 oy (ot (e

and all four factors vanish. Accordingly,

<|Ejmn|2> - K (5-146a)

for m#0 and/or n#o, (5-146Db)

Using these results for the case

n=s,
we have
= 3k % 3k
¥ty PP E E PP [E_ |54 (5-147)
jrs jrs rs rs jrs jrs rs rsl jrs
so that
* 3
=P P K'2 (5-148)
joo joo 00 00
and
* k
<M. M, >=P P K (5-149a)
jrs jrs rs rs -
for r#o and/or s # 0. (5-149b)

Since M* M. and M M. > are real quantities, we can sum directly
joo joo jrsjrs

over j.to form
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joo joo 00 00
j=1
and
J
ZM’T M, =P P KJ
jrs jrs rs rs
j=1
for r# 0 and/or s £ 0.
For the case
nt s,
we have
J J
Z jrnjrs = Prnprsz: jro jrs
j=1 j=1
and
J D
|}E]MT v, 2N |F P | |
jrn jrs rnrs JrnJrs
j=1 j=1
Now °
J J \\
z: rnJrs| = ZEJrnEJI‘S Jrn Jr /
J: j:l
(TS sm
jrn JI‘S jroj'rs
J=1j'=1
J J
::}E::E: <ﬁ§f E_E, E. \:> .
jrn jrs jrojrs
j=1 =1
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(5-151a)

(5-151b)

(5-152)

(5-153)

(5-154)
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In the sum on the right, there are J terms for which
J =7

For these, we have

td *
<Fj rnEjr st rnEj by s>

e (Beiee
<IEjrn 2> <]F'jrs 2> ’ . (5-156)

since Ejrn and EJr are statistically independent quantities when n is dif-

ferent from s. For the remaining terms numbering (J -J), we have

<Ez]rn _]rs jrn J'I‘S> <Jrn> < _]rs> E"rn> <Ejrs>' (5-157)

since the four quantities E. , E E. and E are statistically inde-
jrn’ Tjrs’ Tjrn’ jrs

pendent when n is different from s and j' is different from j. Because n is

different from s, at least one of the four quantities Ff']’rn’ Fﬁrs’ Ej‘rn’ and
E{ir'rs has a third subscript different from zero; consequently at least one
of the expected values on the right-hand side of (5-157) is zero. Hence

all terms with j' different from j vanish.

This is true because Ejmn (where m and/or n is non-zero) isa
quantity with a mean-square amplitude of K and a uniformly distributed

random phase angle. Hence its expected value is zero.

On the basis of the above argument — which applies when n is

different from s — we have

J .
Z J1'1'1J1'Sl |Pjnprs|2§:< rn|2> < rs > (5-158)
j=1

]

Hence

J

ZM;onMjool2 I on ooI for n#0, (5-159)
J=1




J ,
IEM* u_ |2 =| |2K3J for s£0, (5-160)
joo Jos 00 s
j=1
J
Z l P |2k (5-161a)
| s jrn ronrs
j=1
for
n#0
r# 0 and/or 3and (5-161Db)
s £ 0.

The condition on the Mj's are (see Subsection 5. 3)

J
3 ns
E rn rs “la"b'CT;r : (5-77)
j=1

This may be rewritten as

J

(AR b3
MZM. M. =8 . (5-162)
J jrn jrs ns
j=1
We do not attempt to meet the condition in this form, since — in the case
considered in this subsection — the left-hand side is only known in a
statistical sense. Instead, we substitute the statistically equivalent

condition

(4anb|CT) IZ - Jrsl s (5-163)

Using the values for the expected value

J
(IVM’T M. IZ>
ad jrn jrs

j=1

given in (5-159) through (5-161), we obtain the five following conditions.

1l
o
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For the case
n # s, (5-164)

we have the three requirements

1 Z sk
(4a"BCT) |5* p |33 - o, for nt0 (5-165)
J on oo
(4a"b‘CT)2| *
(a"BCT)_|# p a4 - o, for s#0 (5-166)
00 OS
(42""BCT)? | 2
——j————lP P k%= o (5-167a)
rmrs
for
nt0
r#0 and/or and (5-167b)
s#0;

and for the case

n=s, (5-168)

we have the two requirements

(4a”b’CT)ZIP:OPOO|ZK4 =1 (5-169)

(4a"b'CT)2|P=:SPrSIZKZ - 1. (5-170)

We note that the conditions (5-165) through (5-167) can be satisfied
exactly when J is infinite, that is, when the transmissivity patterns are
infinitely long. However, we can make the expressions on the left-hand
side of these equations as small as we wish by choosing J large enough —
and thus also make the unwanted contributions to the replica as small as we
wish. The relation between the '"noise' produced by these unwanted contri-

butions and the number J is discussed later in this Subsection.

It can be shown that condition (5-169) cannot be satisfied with
non-negative transmissivities when K is greater than unity, and hence
cannot be satisfied with physically realizable weighting functions. Failure

to satisfy this condition results in too high a value of Eoo . This
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corresponds to the superposition of a spatially uniform intensity level on
the otherwise perfect replica. This situation can be corrected by using an
integrating screen that permits us to subtract this unwanted uniform
intensity — for example, by optical quenching — without otherwise affecting
the replica. The information needed to control this subtraction is avail-

able in electrical form in the receiver.
Librascope has an integrating screen with this property.

We note that a condition equivalent to (5-169) does not appear in
our previous discussion on non-random transmissivity patterns. The
reason for this fact is that no explicit assumption was made about the
specific form of each M-pattern. Had we made such an assumption, we
would have discovered the need for imposing a condition equivalent to
(5-169) to ensure perfect replication in cases when each M-pattern consists

of more than one element (aperture).

We mentioned earlier that the expressions on the left-hand side of
equations (5-165) through (5-167) can be made as small as we wish by
choosing J large enough. We now derive an expression for the noise in the
replica resulting from the unwanted signals that occur when J is finite; we

also derive the corresponding replica signal-to-noise ratio.

By analogy with (5-2)

© % iz Ex + 3L
_ Zall [}
Ryt )=> D> R _(t)e (5-171)
T =00 S =00
where
) J .
- 4 - A -
R, () = 4a" b CT, S LT > LA (5-172)
n= - j=1

The desired portion of the replica is formed by the term for which

n==:s
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The remaining terms produce unwanted signals which contribute to — what
we shall call — a "confusion picture of the first kind", This picture

(1) . .
]?rs(tk) is given by

o0 J
() v = 4w *
Fig () = 4a"HCT, D20 Tl 20 M Mo mis (5-173)
n =-00 J::]_
so that
e SeaP?
] o0 J J
2 K sk
(44'UCT) 3 > (4 nr (5. wmD D MMM
— 1 ro' k-1 Jrn_;rs_]rn' j'rs
J n=- n'=-% ji=1 j'=1
n# and n' #s. (5-174)
Now consider
J J
SO M KK M
jrn jrs jro jrs
j=1 =1
J J
Z E <Mjrnﬁ{irij'rn'Mj'rs> . (5-175)
j=1 =1

For all terms with j' different from j, Mj‘ and ﬂ{, are statistically independent.

The same thing is true of their transforms,

Hence

MMM, M >
jrnijrsj'rn' j'rs

* % .
= <Mijjrs><Mj,mMyrs> (5-176)
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However

b

M. A PP
jrn jrs rnrs

ré T n7. L
k k
% izm( é 2‘225 tope - g (5-177)

.
n
*
WMN

=1
and
. jk -~ 3K Jk'
* - pF 1211( + )
<MjrnMjrs>~PrnPrs Z Z e ca’ Zb‘
k=1 K=1 (5-178)
Further
K K n‘n _sm.
- s %kz aka' Jk')
Z- o ©
k=1 K=1
K K €J r n sM.
k U5k 4+ M - e
s 3 ol ) i
k=1 K=1

Because of the statistical independence of gjk, Ejk , Tﬁk’ and njk‘ , all terms
on the right-hand side of (5-179) with k' different from k can be written as

< 121rTT—> <‘e -12n2€-‘,‘,"> < i2m Jk>< -1Z1r . (5-180)

This product vanishes, except when

r=n=s=o0, (5-181)

in which case it is equal to unity. Consequently, since we are considering
only the case for which n is different from s, we can drop from (5-178) all

of the terms for which K is different from k. Then (5-178) becomes

K .
.5, N-8§ (5-182)
% . i2m £..\,
<M. M, =PP> Z<e 28 ik
jrn jrs rnrs k=1
which vanishes whenever n is different from s.
From (5-182), both sides of (5-176) vanish when

j #j and n# and/or o' # s. {5-183)
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Accordingly, we can rewrite (5-174) as

R(l (tk)l >

J
2 = &
(42''BCT) 4 A
T 2 A Tl D ™ 2 e
=-en=- J=1

nts and n s (5-184)
Again, consider

J

> M M. MM
jrn jrs jrn jrs
J=1

J
DR (5-184)
jrn jrs jrn' jrs
J=1

By an argument similar to that which lead to (5-182), this vanishes whenever

n' is different from n. Using this result in {5-184), we have

(13 tk)lz

[ARN 2 =
(_4_3'_;_(:_'_1‘_) nzz-m'f St -7 <JZ'M‘]rnI p_]rs

nts {(5-186)

We are not interested in the special case

GRE D

since this contribution is subtracted from the integrating screen. For all

other cases,

e = e

and we have

(5-187)
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Rl -
(4a"b'CT);‘,Prs,'2 K n:iw 'Irn(tk_l-'rlZ <|Mjrn

nt¢s (5-188b)

Z> (5-188a)

for

For the general case, when r is different from zero

<lern.|z> - lprnlzK (5-189)
and we have
Pl -

(4a"b'CT)2lP |2|P |’k* &
Irs rm

J n:Z-a 'Irn(tk-l"")lz =

n=-®

(4a"vcT)? P |Pk%( =
- J,PrS, { Z Irn(tk-l-r)l2|Prn|2 - I“Z-rs(fk—ln‘r)l2 Prs 2}
(5-190)

For the special case where r is zero, we note that

3
R

_ 2,2
joo joo " | oo

K (5-191)

so that

A -

n:z_w IIon(E( -1 T)l Zl 'Pon

(4a”b'CT)2|P |2K2
‘08
5]

2- |Io s(tK-l-T)lz‘Po s‘zf

+ (K3-KZ)lfoo(i_l'f)lzlpoolz (5-192)

1f, as is reasonable, we transmit only the ac component of the photo-
sensor output and omit the dc component, this has the effect of removing

I {4 _1-T), and (5-190) holds for all values of r.
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We now note that the space-variance of the confusion picture is given by

- rieo s—i-oo

> (5-193a)

Ay

for

rt0 and/or s # 0. (5-193b)

Using (5-190), we have

LRR 2 2 ® ht I
R R {Z I LA W N

1 s=-®

(4a”b'CT) K° {Z" Z | (tk-l-T)|Z{Prs|_4}’ (5-194)

Where, from (5-193), we omit the terms for which both r and s are zero.

Further, since we have removed Ioo(fk_l-‘r), we omit the terms for which both
r and n are zero. We now suppose that condition (5-169) has been satisfied,

so that for all terms of interest

2 1
lP rsl = Za5CTR (5-195)

Then we have from (5-194)

2335 S sl - Fods oS

s=~ r=-®n=-

57{ _i i l T’lz - lIoo(tk-l'T)lz} - (5-196a)

for
s # 0. . (5-196Db)

But

>

r=-—-® g=—-®

| - i) e of (5-197)

the space-variance of the original image so that, from (5-196)
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o0

2 1 2
ORI_TSZ Oy -

-0

A

(5-198a)

Cg| b

for
s#0 (5-198b)

In fact, we do not run over the full range of s in (5-198), but only between

limits + S, where S if defined by the relation

Prs =0 for lsl>s =N (5-199)

where N/2b' is the highest spatial frequency of the original image in the y-

direction. Hence, finally,

2 _25-1 2
U'Rl = ——JT—O'I . (5-200)
It is reasonable to take the quantity 0‘}21 as a measure of the unwanted signals
(or noise) corresponding to the confusiclm picture of the first kind. We shall
refer to this quantity as '"confusion noise of the first kind" and define the

replica signal-to-noise ratio (S/N)R corresponding to this noise by
1

S U?i
() S —— (5-201)
N' o ch
1 R,

= (5-202

The confusion picture of the first kind arises from a failure to meet the
conditions (5-165) through (5-167). We shall refer to these conditions as the
""orthogonality" condition, in addition to this confusion picture, we also get —
what we shall call — a '""confusion picture of the second kind' because we have
satisfied conditions (5-169) and (5-170) only on the average. This picture

occurs whenever

e <E_]mnE1mr> # EjmnFj'mn - (5-203)

5-42




The corresponding noise — which we shall refer to as "confusion noise of the
second kind'" — can also be made as small as derived by choosing J large

enough. We shall now prove this statement.

To this end, we start by considering the terms of the replica for

which n is different from s. These are

rzza 52:. 4a"BCT; I (t _ I-T)Z Jrs e

121r( r+ 5% )
Za' Zb' (5-204)

Assuming that the functions Mj(x,y) have been properly chosen so that

J
* _ 1
j=1

there remains a second confusion picture éz)(&y,&() which results — as
mentioned earlier — from the fact that conditions(5-169) and (5-170) have

been satisfied only on the average. We have

+ 3y
(2) _ " i2n(50m 5h)
gy = 53 savonr, g m{z mm(z e

r=-®

(5-206)
The expected value of R( )(x,y,E{) is zero at every point, since the expected

value of every term on the right-hand side of (5-206) is zero because

J J
': i=1

Then, the confusion noise of the second kind 0121 is given by

2
2 Zve < " / N
- K -
GRZ = 4a bCTJ) r:Z-m sZmlIrs(tk-l 7) Z MJrsMJrs Z Jrs jr
=1 (5€208a)
r#0 and/or s # 0. (5-208Db)
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We observe that

J J
ZM;rijrs - Z Mjrs !
j=1 =

j=1

which is a real quantity. Then

J J
% * 2
< Z Mjrijrs-<Z Mjrijr> | >
j:]_ J:l

é’”jrsz R Zi:l’”jrsz Zl Jrsl> éwir5|>2>
=<{i .. > <Z|Jrs> , (5-209)

2>-<Zilll%rsl>z

and we can write (5-208) as

© o ‘ J '
U;Z = (4a"b'CTJ)Zr;Q SZJIIS(E(-W)P <Z lers 2
j=1

for {(5-210a)
r# 0 and/or s £ 0. (5-210Db)
We now recall, from (5-141), that
. =P E. (5-211)
jrs rs jrs
so that
J J
2 I IZ 2
Z |Mjrs| - Prs ZIEjrs (5-212)
j=1 j=1

e’
S’ |
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In order to evaluate the second term on the right-hand side of (5-213), we

write

J
@A
jrs
j=1
we know, from (5-146) above, that -

< IEjrs,2> - K (5-215a)

}Zz{ éEJ'rsz }ZZ{ZJ: 'Ejrslz }2 (5-214)

j=1 j=1

r#0 and/or s # 0. (5-215b)
Hence,
3 , J
{ZlEjrslz}' - { ZK}Z - 7°K?, (5-216)
i=1 j=1

In order to evaluate the first term, we write

J J

2 2

Jrs‘ > <Z ZlEjrsl ) Ej'rsl
o1
J=]- j'=

Ejrslz‘ 'Ej'rs|2> ) (5-217)

j= 1

For the terms, (JZ-J) in number, on the right-hand side of (5-117) for which
j' is different from j, we recall that Ejrs and Ej'rs are statistically inde-

pendent of each other so that

< lEjrsl2 ) IEj'r'le> =< Ejrsl2 > < lEj‘rs ’ > = KZ' (5-218)
Consequently (5-117) becomes
! 2 2 2 4
> IE Jrsl = (I°-DK“+ D irs (5-219)
i=1 1

In order to evaluate <|Ejrsl4> , we recall from (5-140) that
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K .
si2m(5=7 + —)
E " y o e b | (5-220)
k=1
so that
ré, sMN. ré. s,
. a K K an 2:‘ + 23‘1) ~izn( 23?+ 2,
‘Ejrsl =EjrsEjrs: 2 Ze T € 2 . (5-221)
el e
Therefore

4
g i d i i 2 2 3
EJI‘S' can be written as a quadruple sum over indices kl kZ k3

and k4 with the sign of the exponent positive for k1 and k3 and negative for

kZ and k4.

When we consider the K4 terms in the quadruple sum, we find the

following:

(a) There are K terms in which all four subscripts (kl’ kz, k3, and
k4) have the same value. The expected value of each of these

terms is 1.

(b) There are 4K(K-1) terms in which three subscripts have the
same value and the fourth has a different value. The expected

value of each of these terms is zero.

{(c) There are K(K-1) terms for which kland 1% have one value and
k3 and k4 have another value. The expected value of each of
these terms is 1.

(d) There are K(K-1) terms for which k1 and l% have one value and
kz and k4 have another value. The expected value of each of

these terms is zero.

(e) There are K(K-1) terms for which kl and k4 have one value and

k2 and k3 have another value. The expected value of each of these

terms is one.

(f) There are K(K-1)(K-2) terms in which three of the subscripts
have different values and the fourth subscript has a value equal
to one of the other three. The expected value of each of these

terms is zero.
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(g) There are K(K-1)(K-2)(K-3) terms in which all four subscripts
have different values. The expected value of each of these terms

is zero.

Thus, in examining the expected value of the quadruple sum which is

equal to lE l4, we have
jrs

(Zkz-k) terms with a value of 1

(k4-2k2+k) terms with a value of 0

(el

Using (5-222) in (5-219), we have

- 2K% K. (5-222)

7
2
< > lx-:jrs,iz > = (J2-)K? + J(2k%K) = I%K% + JK? - JK. (5-223)
=

Substituting (5-216) and (5-223) in (5-213), we have

J
<Z Mjrs > <Zl JI‘S > = IPrs|4J(K2-K)' (5-224)

=1

Substituting, in turn, this expression into (5-210) we have
2 2 2 4J 2
— ]t - - -
qu = (4a bC'I:I) I-:z-m Szz. Prs(tk-l T)I |Prs| (K™ -K) (5-225)

From (5-170), we recall that P(x,y) was chosen so that
4a"YCT|P_ 'ZJKZ 1 (5-226a)

r o and/or s#0 (5-226b)

over the region of interest. Substituting this value in (5-225), we have for

the confusion noise of the second kind
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1
o2 - JEEK) i i (& -7 :_1;_'1{02 (5-227)
R, " 22 ey lIrntk-l 1°
and for the corresponding signal-to-noise ratio (S/N)Rz
o> 1-z
(§N) 5?1_ =_J_K ) (5-228)

R

The replica signal-to-noise ration (S/N)R corresponding to both

kinds of confusion noise

g

1 1 J
S - = = -
(Dp "2 + o2 1-L 2s-L (5-230)
N R R, 25-1 + K K

J J

Therefore, for large values of K, we have

S J
(R ~3% (5-231)

R 2S5

The total displacement of the transmissivity patterns during the

integration interval T is
vT = 2a"]J. (5-64)

From(5-230) and (5-64 ), it follows that

(5 - _vT (5-232)

R Za”(ZS—i—{)

and from( 5-31) and (5- 64 ) that

vT

Zln

R

for K large.
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5.8 Alternative Form of Physically Realizable Weighting Functions
Satisfying the Second Set of Less Restrictive Conditions.

In 5.5, above, we considered the case of a transmissivity pattern
having internal periodicity, and showed that such periodicity (when properly
chosen) automatically satisfied the orthogonality conditions. The particular form

we choose for W(x,y)in 5. 6 was

J
Wiy) = 2, Mx-j 22, y-i22) (5-123)
=1 3 J
where
22, (5-234)
3

The equivalent of condition (5- 122 turned out to be simply

a5 CTJ (5-134)

Now, as in 5.7, we let

K K
M(xy) = P(xy) = 2 P(x-£, y-n) (5-235)
kzzl k k=1 A

where Ekand nk are a set of statistically independent quantities, randomly

distributed over the intervals from -a to +a and from -b to +b' respectively,
having uniform density with respect to k. Following the same line of reasoning

as was used in 5.7 (cf 5-139),

K .
-i2m &
_ m >k nnk
an B Pmn kZ=1 € (_ﬁ_+w) (5-236)
whence, as before, (cf 5-148)
M lz =|1= |2 k2 (5-237)
oo oo

and (cf 5-149)

<| M '2> |7 |2 K (5-238a)
mn mn
T

m # o and/or n+#o. (5-238b)
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From (5-134) and (5-238), we obtain for

2
P I = 1
1%, - T CTRD (5-239a)

for
r = o. (5-239b)

As in the earlier case, we observe that we must subtract the dc term
which arises for r equal to zero. As before, we can remove this dc term by
subtracting it at the integrating screen. J is now determined, as in the non-
random cases, by the highest spatial frequencies, in the y-direction of the

original image and the transmissivity pattern.

Confusion noise of the first kind —which results from not satisfying
the orthogonality conditions — does not appear in this case. However, confusion
noise of the second kind — which in this case results from randomly displaced
versions of the desired replica —does appear when the length vT of the trans-
missivity patterns during the integration interval T is finite. We shall now

derive an expression for this noise.

The replica contains no '"non-orthogonal' terms in this case. We

have for R(ng,tk) only

% 2 =X . 5Y,
Rxyt )= 2, R _(t)e 2= 2PV (5-240)
Yk r, -rk
r=-0
where
2
R, _{t) = 4aBCTI I _r(tk_l-'r), M, _r, (5-241)
Drawing on 5.7, we can write
2
zo (5-242)
0.Rl
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To reduce the confusion noise of the second kind, we use a trans-
missivity pattern of m discrete sections, each of length 2a'J as described in
5.8. The interval of expansion for ¥ and P is now 2a'J by 2b. As in

mn mn
5.7, we separate each transmissivity pattern of length 2a'J by opaque regions

of length 2a'. Then integrating over a time T, given by

vT = 22 = m(J+1) 24, (5-253)
we obtain for the total confusion noise O
1
2 1= 2
O~ "RZ'._E. o (5-254)
m

and correspondingly

Sy=(3) -.m

N R TTL™

2 K

(5-255)

Using this value of m; in (5-253), we obtain for the total displacement vT of the

transmissivity patterns interval T during the integration

s S
VT m () (J41) 23 me(S) 227 (5-256)
NR Ny
or
Sy va:r (5-257)

NR

for large values of K and J. From earlier considerations, we require that

. J>N+S, (5-258)

where N is defined by the relation

I 6 -TZo for |n| >N (5-259a)

P
rs

o for , sl >S. (5-259b)

Using this value of J in (5-257), we obtain

() = vT
R Za(N+S). (5-260)

We note that the same value of (S/N)R can be achieved with a shorter
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displacement vT when random transmissivity patterns with internal periodicity
are used instead of random transmissivity patterns without internal periodicity
since

al <a”’ (5—261)
and S is chosen so that

S =N. (5-262)

b




5.9 Discussion of the General Forms .»f Weighting Functions Providing
Periect Replicas

We now review and discuss the results obtained so far in this section.

We first derived a set of sufficient conditions for the, in principle,
perfect reptlication of bandlimited images produced by weighting functions
implemented with moving time-invariant transmissivity patterns (scanning
aperture patterns). We discovered that no weighting functions of this type
satisfy these conditions — even if these functions consist of transmissivity

patterns of infinite length.

We next noticed that the sufficient conditions mentioned above were not
necessary ones, and sought to find alternative less restrictive conditions. We
found two such sets of conditions, and discovered two general forms of non-
random transmissivity patterns (see Subsections 5.4 and 5. 6) that satisfy the
first set and the second set of less restrictive conditions, respectively. We

also discovered (see Subsections 5,7 and 5. 8)a set of two general forms of

random transmissivity patterns that can also be made — albeit on a statistical
basis — to satisfy the first and second set of less restrictive conditions,
respectively.

We note that conventionally instrumented single-spot line-scan television
is a special case of the general forms discussed in Subsections (5. 4) and (5. 6).
In effect both these forms reduce to single-spot line-scan television when the
M-patterns discussed in these two subsections consist of a single small hole.
(Note that the length de of the opaque regions separating transparent regions is,

for all practical purposes, zero in this case.)

Instead of using M-patterns consisting of a single hole, we can use
M-patterns consisting of a cluster of holes, possibly of different sizes and
shapes, to modify the frequency response of these patterns. (In this case the
M-patterns of Subsection (5. 4) — but not those of Subsection 5.7 — must be
separated by opaque regions of non-zero length de.) We have not investigated

the properties of such patterns,

An alternative way of modifying the frequency response of the M-patterns
is to shade the transmissivity of each transparent element appropriately '""Clear

holes' and two types of shaded elements are discussed in Subsection 6. 2.
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We observe that the orthogonality condition (see 5-75) ensures that no
unwanted ""spectral components' appear in the replica, that is that the replica
contains only spectral components which belong to the original image. We saw
that this condition can always be satisfied in principle. However, it may not
always be satisfied in practice. When it is not, "confusion noise of the first
kind" occurs which is similar in nature to that discussed in the case of purely

random transmissivity patterns.

We also observe that the second condition (see 5-76) ensures that all
the spectral components contained in the original image are reproduced with the
correct amplitude and phase. That is, the second condition ensures that the
frequency response of a pair of transmissivity patterns is flat (and free from
phase shift) over the spatial-frequency band containing all spectral components
with significant intensity; and that this frequency response is properly normalized.
This latter characteristic of the second condition is trivial and we shall hence-

forth refer to the second condition as the (spatial-frequency) flatness condition.1

We conclude these remarks on spot-scan television by noting that the
second set of less restrictive conditions consists of only a single condition; the
flatness condition. The orthogonality condition does not appear because it is
automatically satisfied by choosing the internal periodicity of the transmissivity

patterns appropriately.

We next considered two general forms of transmissivity patterns for

area-scan television.

The first form of random transmissivity patterns is made up of M-
patterns of length 2a'" (which normally is equal to 4a') which in turn consist of
randomly placed P-patterns. These latter patterns could consist of a cluster
of transmissivity elements; however, we believe they will usually be chosen
to consist of a single element. This type of transmissivity pattern produces
confusion noise of the first and second kind. To decrease this noise to an

acceptable level, we have to use successively a number of different M-patterns

1In practice perfect flatness over the band of the original image is seldom
required, and may even be undesirable, as discussed in Subsection 6.3 in
connection with equations (6-33) and (6-34).
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during the integration interval T.

The second form of random transmissivity patterns is made up of
periodically-related M-patterns in such a way that they form a single W-pattern
with an internal periodicity in a direction which makes, in general, a small
angle with the x-direction. This pattern produces no confusion noise of the first
kind but does produce confusion noise of the second kind which can be decreased
by using successively a number of W-patterns during the integration interval.
However, the transmissivity-pattern length vT required in this case to obtain
a given replica signal-to-noise ratio is less than that required for purely

random patterns.




6. SPECIFIC FORMS OF WEIGHTING-FUNCTION ELEMENTS (TRANS-
MISSIVITY-PATTERN ELEMENTS) AND QUALITY OF THE
RESULTING REPLICAS

So far we have been concerned only with the general forms of weighting
functions — and their associated transmissivity patterns —that can in principle
provide perfect replicas of bandlimited images. We shall now consider some
specific forms of weighting-function elements and the quality of the replicas
obtainable with these elements. We shall first, however, discuss the '""quality"
function. This function is usefull in assessing the quality of replicas obtained

with different transmissivity-pattern elements.

6.1 The Quality Function

We substitute the expression for Ru(t) given by (5-16) into (2-4) and obtain

t a b
— - ' - .
R(x,y,tk) = CRCTRCT Jk{j I(x, ¥t T)WI(x',y,t T)dx'dy'}WR(x,y,t)dt
-a' -b'
1
This expression may be re-written as
a b t
R(xy.t) =j f (=, y',t-T) {Cjkwi(x,y',t-r)WR(x,Y,t)dt}dX'dy' (6-1)
X B X
b Sl
by changing the order of integration. By Assumption D, the functions WI and WR

are periodic with respect to time, having a common period

T8 ~%. (2-5)

The integral in brackets then depends only on the four spatial coordinates X,y,x,

and y'. We can therefore represent it by a function Q(x,y,x,y"), so that

a b
R(xy.4) i _jHI(x,v,tk_l -7) Qlx,yy) dxdy. (6-2)

Now let a and 8 be two positive quantities such that
a 2a' and B 2b'. (6-3)

We can now write y y
® ® j2n(IRX L DY
Iy, -m=> > I (g, me & P (6-4)

m=-%® n=-®



,

h 2
where 1 % B _12“(%_*_;6_)
Fontis My | | g heay

Then, substituting I(\i‘y"tk -T) from (6-4) into (6-2), we obtain

» B
R(x3t) = o Z 2 L

r)jf QU yr,y) e
m=-® n=-%

-a-

We can also write

IZW(E{— +—sl-)
R(xyy) = E E 2a 2P (6-7)
s=-®
h
where l gﬁ 12(2x+fsﬁl')
Rg) = m-t’i ._L Ri{xyt e dx dy (6-8)
and -a -f 1211(—rl+ s )
_ 1 Za 2B
255 =4T(3_QI Rxyt) e dx dy
® ® 2 ny' rx sy
= E Z L {47 1%'_12 2 J?ffo(&yx,y') e1 n(__+ 2p 2o 2P
m=-%® n=-=- B -a _B a _‘3 d)ddy dxdy.
The integral (6-9)
L RERb o eghezmosn
)(’Yr ) e ! X' Y
16OLzﬁ.z _J_a A.J
2P a Li2m(iX 4 Sy X 0y,
62j f f jQ(xm ,-y)e 2@ 2P 2a 2B g guavay
a-f-a-p
: Qrsmn (6-10)
This is the four-dimensional Fourier transform of Q(x,y,-x'-y') so that
@ ® © o 12ﬂ(rx sy+mx' ny’)
P 2 2a
Q(x,y,-%,-y') = r;m S;Q m:Zm n=_mQrsmne e 2p (6-11)

and

6-2

1217(1;1

(6-5)

+3Y)
2Bavay. (6-6)
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e
a

Qxyx,y,) = r_z_m S=Z_m mz-a nz s’ (6-12)

From (6-9) and (6—1 0), we obtain
-}
BrS(E() = Z Z Z (t T) rsmn (6-13)
m=-®n=-%

In the special case where

5tsmn =0 for mé#r and/or n # s, (6-14)

which alwayshappens when we have satisfied the orthogonality conditions, we
have
28 (6-15)

Qyity) = 3 Z S ..

r=-® g=-

so that Q is a function only of the two differences (x-x) and (y-y'). From
(6-13) and (6-14), it follows that

o} = %) 6-16
rsrs 1 (tk_l-'rs ’ (6-16)

rs

and consequently

JPRRY lr(x-)(') S(Y‘Y')
" 2a 2B

Qx-x,y-y) = Z Z TT_\—’T . : (6-17)

r=-® g=.® I'S

where 2a and 2P are chosen, of course, to match the basic intervals of ex-

pansion originally used in defining Rrs and Irs

For the final set of less restrictive conditions,

r(x-x)  s(y-y')
ATy 25 )

Q(x-x, y-y') = 4a"bCT Z Z M. (6-18)

r=-® s=-®




or
ré
121r( 2 ,)
Q(&,m = 4a"YCT Z Z e za7 " 2B (6-19)
r=-® gz -®
Since
a” bl
1 r
oy f J M(x y)M(xt+§, y+n)dxdy
—a" -
1t bl s
© © 12-rr(r£” ,) a 121'r( = y,)
= Z Z M & 2a Zb 4;"b‘ J‘ M(xy)e 2 Zb dxdy (6-20)
r'__— :
-a' -p
© © g )
_ Z Z Za' Zb' , (6-21)
- r:— S= = rs
aH bl
Q& m=cT | [MeyMx+g, yemaxdy (6-22)
-a'' -b

For the second set of less restrictive conditions, we have — omitting

the intermediate steps —

a b
Q&M = CT [ [ Wiy WixtE, yn)axay. (6-23)
-a -b
a b
=CTJ f fM(x,y)M(x+§,y+‘n)dxdy. (6-24)
-a' -b

For the purely random weighting functions of Section 5.7, Q is defined

only in a statistical sense as

a“ bl
Q&M =CTK | [Pxy)P(x+E, y+mdxdy (6-25)
-a'' .h

For the quasi-random weighting functions of Section 5.8, we have

similarly
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b
Qg 1) =CTKJf _fP(&Y)P(X+€,y+n)dxdy.

a'l

(6-26)
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6.2 Quality Functions and Space-Frequency Functions of Three
Different Transmissivity-Pattern Elements (Apertures)

In the case of a rectangular hole, of width Ay, and height Ay, the

quality function is given by

El < ax
Qé éo) - (ax- 'ﬂL(AAYV‘ f) for and (6-27a)
Inl <Ay
&l > ax
=0 for {lnl > Ay (6-27b)

The space-frequency (response) function is given by the transform of Q(§, 1)
and is, after normalization,

.2 .2
b(f}gfy) _ Sin_mixAxSin "miyAy (6-28)

(3(010) (nzfxfyAxA Y)Z

For a Gaussian aperture defined by a transmissivity function

M(xy) or P(xy) having the form

2 2
X y
Ty r Y —( 2 + Z 4 P00
Mixy) = Pixy) = e Ax Ay , {6-29)
the normalized quality function is
2 2
1 €
- + lLZ'
e n _ 2 Z L2 (6-30)
Q(q0) Y
and, the normalized space-frequency function is
2,., 2, 2 2, 2
v 2. "AaxT + £ TAy)
Qixfy) _ X y . (6-31)

(g 0)
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For a transmissivity function

sin2Te— sin2m-X
X Vi

M(xy) = P(xy) = AZ %y a (6-32)
4T A=y

the normalized quality function is

Q(E, M) _ sin2wE/Axsin2T /Ay (6-33)
Q(o,0) ~ 4n’ En
AxAy
and the normalized space-frequency function is
- I£xl SA-ix-
Abxfy) _ for and (6-34a)
Q(o,0) eyl <
Y 3y
kx| >AL
=0 for ;‘ (6-34b)
>
eyl Ay

We cannot, of course, instrument a negative transmissivity function —
as implied by (6-32). We can, however, achieve the same effect by sub-
tracting the appropriate uniform value from R(x,y,t) on the integrating screen

on which the replica is displayed.
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6.3 Resolution

We have seen that no confusion noise exists in the case of a spot-scan
system when the orthogonality condition is satisfied. Hence in this case the
fineness of detail of the original image which is reproduced in the replica
depends entirely on the quality function. However, more scanning lines are
required to satisfy the orthogonality conditions when the quality function is
rectangular than when it has the form sinx/x. In effect, in theory, an in-
finite number of such lines is required in the former case and a number of

lines equal to 2N in the latter, where N is such that

I =0 for n > N. {6-35)

mn
(In practice of course only a finite number of spectral lines with significant
intensity existsinthe spatial-frequency response, and hence the number of

scanning lines required to avoid detectable confusion noise is finite).

We now define the resolution of the replica to be the fineness of its
detail in the absence of any noise and, in particular, of confusion noise. The
quality function, or the spatial-frequency function, clearly provides an ex-
cellent description of this resolution. We note that the resolution provided
by a quality function of the form sinx/x is much coarser than that provided
by a '"rectangular' quality function when both of these functions refer to
apertures of the same size. The ''gaussian' quality function represents a
useful compromise between the conflicting requirements of fine resolution

and the absence of confusion noise.

We now discuss the resolution provided by the normalized gaussian
quality function (6-30) and its corresponding transform (6-31) when the

dimensions of the aperture are
Ax:Ay:A. (6-36)

The transmissivity of this aperture drops (in any direction from
the center) to 1/e of its maximum value at the center of the aperture.
The normalized quality and spatial-frequency functions drop to 1/e at a
distance AV2 and 1/awV2 from the center, respectively. If one thinks in

terms of a square aperture with sides equal to A, the first

6-8
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null of the spatial-frequency (response) function occurs at 1/A in either the
x or y~-direction. This function is closely approximated by the circular

gaussian aperture defined by

x‘Z + y‘2

e (14254)% , (6-37)
which has an "effective' diameter equal to the cut-off wavelength of the
square aperture. That is, loosely speaking, the diameter of the gaussian
aperture is equal to the reciprocal of the cut-off frequency. We note that
the quality and spatial-frequency functions of the circular gaussian aperture
are uniform in all directions whereas those of the square gaussian aperture

are not.

We conclude this discussion on resolution by observing that, in the
absence of confusion noise, the quality function depends only on the coordinate
differences (x-x') and(y-y') and not on the coordinates x and y themselves

(see 6-17). Hence the resolution of the replica is spatially uniform.
6.4 Contrast

We define the contrast QR of the replica by

_Eme&)
® " E;X.Y,fk) ,

where the bar indicates a space average. This quantity can be adjusted as

(6-38)

desired by subtracting an appropriate amount of ''light'" at the integrating

screen.

6.5 Relative Total Intensity Range

We define the relative total intensity range i, of the replica by

R

anax - anin
. (6-39)

R

R
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This quantity can also be adjusted as desired by subtracting an appropriate

amount of light at the integrating screen.

6.6 Linearity with Respect to Intensity and Spatial Distortion

The operations performed by the proposed instrumentation —
whether they be used for a spot-scan or area-scan system — are linear
and should introduce even in actual practice no significant non-linearity or

spatial distortion.
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7. RELATIVE SYSTEM PERFORMANCE OF AREA-SCAN AND
SPOT-SCAN TELEVISION

7.1 Spot-Scan System
Letl
£ = L and go= 2 (7-1a), (7. 1b)
Xnax A Vo A

be the highest significant space frequencies in the original image corresponding
to the %' and the y'-directios, respectively. Then the total number of inde-

pendent samples N‘l in an original image with dimensions 2a' by 2b' is

- . 1 eaw b 1 -
N‘I—Z(Za)g 2(28) o = 16215 o - (7-2)

The corresponding highest time-frequency f and time-bandwidth B are

- B = = v -
f=B=vf =, (7-3)

where v is the speed of the transmissivity patterns. This relation is
independent of the form of the transmissivity patterns in the absence of both
types of confusion noise and of effective photosensor and receiver noise. It
provides in this ideal case an expression for the minimum bandwidth re-

quired to obtain a perfect replica.

In practice the value of the bandwidth B, given by expression (7-3),
must be increased — even in the case of a spot-scan system — if a high-
fidelity replica is to be obtained. In particular, the time-bandwidth B must
have a value larger than the one given by (7-3) if confusion is to be avoided
with a spot-scan system when — as is usually the case — the space-filter
function of the scanning aperture (transmissivity-pattern element) has a wider
bandwidth than f'. In fact, if the space-frequency response of the scanning

aperture used has maximum significant frequencies

1 1
£ = and £ ==
Ex ;
Xmax x Ym ax AY

Here AX and Ay are the "widths'" of the quality function in the x'-direction
and y' -direction, at points beyond which the amplitude of this function is
negligible.
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we must, in the case of a spot-scan system, take — to eliminate confusion of

the first kind — a number of independent samples Ni given by
_ 1 1
Nl = léa’b‘z;- ay (7-4)

so that the required time-bandwidth B is now given by

— v - -
B=- (7-3)

The total number of independent samples contained in a waveform

of bandwidth B and duration T is

N, = 2BT. (7-6)

It follows, by comparing (7-4) and (7-6), that

2BT = 16ab - L
AX AY

or, using (7-5),

1
AX Ay

ZZ‘;?Tz 16a't’ , (7-8)

and therefore the length of the transmissivity-pattern displacements vT

during one integration interval must at least be equal to

. 1
— 1} -
vT = 8a'b Ay ° (7-9)

If the frequency-response of the transmissivity patterns has a
maximum significant space-frequency

£ =L
AY

Ymax

? (7-10)

the corresponding length of the transmissivity patternmust at least be equal to

VT = 8a'd —— (7-11)
AY

in order to avoid confusion of the first kind. The corresponding number of

lines scanned is

f
pA

max _ vT

J =25 =327 -

(7-12)
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This value of J provides perfect replication in a spot-scan system in the
absence of "effective transmitter noise'' or "effective receiver noise"l. The
term effective transmitter noise is used to denote the noise originating in
the low-level circuits of the transmitter which will probably consist of a
photosensor and a pre-amplifier following this photosensor. The term
"effective receiver noise' is used to denote the noise originating in the

communications link and in the low-level circuits of the receiver.

Let now Jf be the number of scanning-lines chosen to get, with a spot-
scan system, a replica of a given quality in the absence of effective photo-
sensor and effective receiver noise. This number Jf will be smaller than that
give by (7-12) if some confusion noise is acceptable. The corresponding

transmissivity-pattern length vT is given by

f-° 7-13

We shall refer to the integration interval Tf ,which corresponds to Jf,as the

"frame time''.

We shall assume in the discussion given inthis section that Jf has been
chosen so as to give, together with a given transmissivity-pattern element

(which we do not specify) a replica of a specified quality in the y-direction.

The number of scanning lines Jf chosennot only determines the
amount of confusion noise generated but also places an upper limit on the
achievable resolution in the y-direction when all the points of the original
image are scanned at least once by the aperture (that is, when no gaps exist
between the image strips scanned by this aperture). The actual resolution
achieved in this direction depends on the size, shape, and shading, of the
aperture (transmissivity-pattern element) chosen; let the maximum space-

frequency corresponding to this resolution be

1 This is the case in practice if the original image intensity is high and if the

level of the received signal is high.



.

. _
37){ . (7-14)

() 24
On the other hand, the resolution in the x-direction depends solely on the size,
shape, and shading of the aperture chosen; let the maximum space-frequency

corresponding to this resolution be
1
£) =(—=) . 7-15
(L) = () (7-15)
f
We then have for the corresponding time-bandwidth Bf, the relation
- (L _
Bf - (Axf : (7-16)

We now chose values for (Ax)f and (AY)f- These choices, together with our
previous choice for Jf, determine uniquely the quality of the replica of a
spot-scan system when the dimensions 2a' and 2b' of this replica are given.
(We have assumed, see Assumption B , that the dimensions of the replica

are the same as those of the original image.) From (7-13) and (7-15), we

have
Jf -Bfo (7-17)
Gx), - 2E -

and hence the quality of the replica is also determined uniquely by the product

BT, and (Ay)f for given values of 2a' and 2V'.

We now seek to discover, in the case of a spot-scan system, the
effect on the replica signal-to-noise ratio of the system parameters listed in
Subsection 4.3. To simplify the discussion, we shall group together param-
eters that affect the replica signal-to-noise ratio in the same way, and shall
use new quantities to describe the effect of each of these groups on this ratio.
We shall use the total average power Pi intercepted by the receiver instead
of parameters (5) and (6) in Subsection 4. 3; we shall use Nr to denote the
effective receiver noise per unit bandwidth, that ig, the noise
arising from items (4) and (5); and we shall use (S/N)t to denote the effective
signal -to-noise ratio of the transmitted signal corresponding to item (3).

The remaining two parameters listed in Subsection 4. 3 are the video band-
width B and the integrating time T. These two parameters are used explicitly

in our present discussion.
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The total power radiated by the original image through an aperture
of the transmissivity pattern is at any given instant t' equal to AI(x,y'), where
A is the effective area of this aperture and (x,y') its position at that instant.
That is, the factor A is not necessarily equal to the geometric area of the
aperture: this factor is adjusted to allow for a transmissivity not equal to

unity and for a variation in the intensity I(x,y') over the aperture.

Let De be the "effective detectivity' of the photosensor on which the
radiation from the original image is focused, (after it goes through the
aperture). (The term '"effective' is used to indicate that the quantity De
includes the effect of noise originating in the preamplifier following the
photosensor.) Then the instantaneous signal-to-noise power ratio of the

transmitted signal is

D A2P ()
—E—B—— . (7-18)

If we transmit only the ac component of this signal, we have for the average

transmitted signal-to-noise power ratio (S/N)t over the frame time T, the

f
expression
2 2.2
s, AogDh
®) Sk & (7-19)
where
of 2 17x.y) - TAxy) (7-20)

is the space-variance of I(x¥,y') over the "'frame''of the original image.

When the apertures are rectangular, this result is completely inde-
pendent of the ratio of the y-dimension of the aperture over the distance
between the center-lines of two adjacent image strips scanned by the aper-
turev.1 In effect, if this ratio is n, the number of times the same point (x,y')

is scanned is also n; we therefore have

Except for a change in the "effective area' A, which is insignificant for
the usual range of the values of A which one might consider using for a
given value of Jf and 2b'.
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2:12 =2

2 -1 . (7-21)

of = n1® - (nD)

This result is not precisely correct if the aperture is not rectangular or
if adjacent strips are not contiguous; but it still holds,to a high degree of

approximation, for the usual aperture shapes and centerline distances used.

The total average input signal power Si to the receiver, which arises
from the power radiated by the original image, is given by
S
(R

S =P
1 i S
PR

; (7-22)

and the total input noise power Ni to the receiver, which arises from the
effective transmitter noise, is given by

1

S .
)
1\'t

N =P

. (7-23)
LS FY

If a point of the replica is scanned n timnes by the scanning aperture
in the receiver (because the ratio of the y-dimension of the aperture over the
distance between adjacent scanning lines is greater than unity), the space-

variance 02 of the replica arising from the radiation from the original image

R
is
2 2
Og = nSu1 (7-24)

because of the integrating property of the screen on which the replica is
displayed and because the intensity of the original image is time-invariant

during the integration interval. On the other hand, the space-variance

ol‘ir arising from both the input noise Ni and the receiver noise NrB is
2
= nN B -
oy = nN, + nN_ (7-25)

again because of the integrating property of the screen and because the noise
fluctuates during the integration interval. Similarly, if the total integration

interval T is larger than Tf, so that

T = mTf, (7-26)

where m is usually a (positive) integer, we have
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°121 = mznzsi (7-27)
and
OIZ\I = man + rnnNrB. (7-28)

Consequently the replica signal-to-noise ratio (S/N)R is

22

S. 0121 ) mn"§ . mnS
R 27T " mNFTmaNB -NFNB ° (7-29)
R O'N i T i T

Replacing Si and Ni by the expressionsgiven in (7-22) and (7-23), we obtain

S
1+ (N)
) = :
NG P, 7-30
—5 + NrB
1+ (N)t
Now
B
NrB = (_S_) s (7-31)
N
T

where (S/N)r is the effective receiver signal-to-noise corresponding to noise
originating in the communications link and the receiver. Substituting this

value of NrB into (7-30), we obtain

S mn -
(N)R R S S (7-32)
RIS
Nt Nr NtNr

We now define Cf by

G = BTy (7-33)
or, using (7-26)

_ T
Cf— BE . (7-34)




From gquations (7-19), (7-31), and (7-34), we obtain

S
®) =—=B N B B NB (7-35)
R I S r
2ot B At B
17 17e
or
nL
S ) = Cf (7-36)
N~ N N mC
! ,ry 1 _f
Ao’ B A% BT
I'e Ie
Clearly the best replica signal-to-noise ratio occurs for
m = 1. (7-37)

That is, if we are given an integration interval T and desire a given replica
quality in the absence of effective transmitter and receiver noise, we should —
in order to get the best replica signal-to-noise ratio — chose to send a

single frame during T. Consequently, in the case of a spot-scan system,

we always chose
Tf =T, (7-38)
Because, as mentioned earlier, the product

Cf = Bfo (7-33)

is a constant for a given replica quality in the absence of effective transmitter
and receiver noise, it follows that — under the stipulated conditions—we

should use a bandwidth B given by

C
B=x , (7-39)
so that
B =B . (7-40)

With this choice of m, we have

40




S
1
1
1
1
1
4
4
1
1
1
4
1

n T
(‘51\'12{: Cs (7-41)
1 +Nr 1+ (Cf/ T)
572 D YA
A OlDe 1 A diDe

We note, as expected, that the replica signal-to-noise ratio in both (7-36)
and (7-41) increases with the integration interval T, and increases with

decrease in cf.
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7.2 ‘Area-Scan System

We consider here only an area-scan system using quasi-random
transmissivity patterns with internal periodicity because such patterns pro-
vide,in general, a superior performance to that provided by purely random

patterns.

The former patterns have opaque regions of length 2a' between

successive segments of length 2a'Jy Therefore, we now have

41
and
Cf = Bf T, (7-43)
instead of (7-33) and (7-34), respectively. When, as before, Cf and
Jrare constants of the system and when T is given, we shall write
LT I
C = B— T (7-44)

and consider the replica signal-to-noise ratio obtained for different values

of B and m.

The analysis proceeds as before, except for the following differences.

First, the transmitted signal-to-noise power ratio (S/N);: is now

g 1 KAZO’ZIDi
{) =—p5— (7-45)
t

instead of as given in (7-19); the constant K is the number of apertures

(transmissivity-pattern elements) illuminated at the same time. We now

have
)
t
=P — (7-46)
S‘l i, 4 (§N)
t

and
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&)
N]!. = Pl ———-—SE-—,— . (7—47)
1+ (N)t

Second, the K apertures at the transmitter and the K apertures at
the receiver give a total number KZ of paths for the radiation arising from
the original image. The desired replica is produced by radiation using K
of these paths; the remaining (KZ-K } paths produce confusion noise of the

second kind. We get

(a) for the spatial variance 0‘12{ of the desired replica

2 2
o'é:KmnSi , (7-48)

(b) for the space-variance cr'z of the confusion noise
P R2

- 2 2
Pz op, = (K-1)mn S (7-49)
(c) and for the space-variance of the replica noise, arising from

both effective transmitter and receiver noises

o’

N KnmN‘i + KnmN’rB. (7-50)

Consequently, the replica signal-to-noise ratio (S/N)’R is

2
. 0'2 KInZnZS.
(%) ) a 7~ Kmn(N N BYF T - (7-51)
: )
R °R2+ON i'r c

Replacing S‘i ) N‘i , and Pi’ by the expressions given by (7 -46), (7-47) and
(7-49), we obtain

22,5,
Km™n PI(N)t
1+ ()
N NY
(_) = (7-52)
N R, 2 S 1
KmnP ' (K-1)mn"P. (N)
_____S}_|+KmnNrB+ 5,1 t
1+ (—N;) 1+ (ﬁt)

or, remembering (7-31) and using (7-45),
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S\ mn
(] = 1 I (7-53)
R s T + S 0 + S i s T + n(l--K
(—N-) (N) (N)t(ﬁ)
t T

Substituting the expressions given by (7-45), (7-31) (with appropriate primes),
and (7-39), in (7-53), we obtain

T Jf
nB e BT
() = : (7-54)
N NB B NB
R B by T 1
22 S " -g)
KJ\oi i I(A;UiDZ i
or
oL
Sy - G Il . (7-55)
NR T T B I U B S |
DZ P AZUZDZ P1 T Jf Cf m J+1 K
e I"e
hence, for large values of Jf
Nk
N Cf . (7-56)
R 1 1+ /T 4+ T (l-l-)
KAZGZDZ ZDZ me K
I7e
We can, in principle, maximize (S/N)h by choosing m so that
2 nPA"0%1Y
= (K- 1) C (7-57)
f)(l+ )
T
or, for large values of Jf , so that
> nP.lAZ('JiD2
~ (K-1) ze (7-58)
)
T

For this value of m
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C, Tl
' s
(%) = 172 (7-59
R N 1/2( =nN
R SN SAPY S -
KA%gept B K PA% g4 Df
I'e 1 Ie

Hence, for large values of K and J, we have

n-L
C nTP.
s 3 i S
([) ~ ~— = = n (—N- (7-60)
NR Nr CfNr r
P1

By comparing (7-59) with (7-36), we note that an area-scan system
can, in principle, eliminate the effects of the effective transmitter noise com-
pletely. This is achieved with the same transmitter power but at the cost of
additional bandwitth. This bandwidth B is approximately m times greater than
that required to produce a replica of a given quality in the absence of effective
transmitter noise when the time T taken to produce a single
replica is the same. The exact relation between the video-bandwidth of the
spot-scan system and that of the area-scan system discussed in this section
is

F+1
= nlﬁif B (7-61)

area-scan spot-scan

This relation is obtained by comparing equation (7-39) with equation (7-44).
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8. MERITS OF MECHANICALLY SCANNING APERTURES FOR SPOT-SCAN
TELEVISION

Area-scan television uses simultaneously-illuminated multiple-scanning
apertures. These cannot readily be instrumented with conventional pick-up
tubes and cathode-ray tubes. We have, therefore, considered a variety of
mechanically scanning apertures and, in particular, film strips, steel strips,
and rigid discs. Systems using such scanning apertures are light and relia-
ble and, more specifically, they need no high-voltage supplies and no sweep

circuits.

We therefore believe that spot-scan television, using mechanically
scanning apertures, should be considered for applications in which these
features are valuable. This is particularly true when colored replicas are

desired. Such replicas can, in effect, be obtained quite simply by using

(a) three scanning apertures that are trans-
parent to three different wavelengths,

(b) three photosensitors to convert the radi-
ant image into electrical signals,

(c) three separate channels in the communi-
cation link,

(d) three '"driving'' lamps at the receiver to
provide the uniform illumination RU’ and

(e) a three-color integrating screen.

Note: Although we have not given in this report the mathema-
tical analysis of multi-colored images, it can be shown that
replicas of such images can also be obtained to any desired
degree of perfection.

With film and steel strips, speeds in excess of 100 inches/sec are
readily achievable, and with discs peripheral speeds in excess of 3000

inches/sec are readily achievable.




The application of interest to JPL — according to post-contractual
discussions —is the transmission of an image 11 millimeters square. ’I:he
desired resolution is equivalent to that of a 200-line (television) scan with the
same resolution in a direction parallel to the scanning motion. The desired
integration time T is 800 secs. For these parameters, it follows that the
time available for scanning a single line is 4 secs, and the corresponding
scanning-aperture speed is less than 3 mm/sec (x0. 12 inch/sec). The
accuracy with which this aperture must be placed is approximately 0.01 mm
(~0. 004 inch).

Under these conditions, we believe that a film strip — if the envi-
ronmental conditions are not too severe — or a steel strip offers a suitable
mechanization of the transmissivity patterns used for scanning. The length

of the strip is 2. 2 meters, which is quite acceptable.

We conclude by noting that a mechanically scanning aperture can be

used at the transmitter together with a cathode-ray tube display at the receiver.

This may provide the optimum instrumentation when high frame speeds and

large replicas are required.
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9. RELATIVE MERITS OF AREA-SCAN AND SPOT-SCAN TELEVISION

Area-scan television provides secure transmission: a replica of the
original image cannot be reconstructed by intercepting the video signal trans-

mitted if the exact form of the weighting functions used is not known.

In addition, for a given transmission time T per picture,an area-
scan system can, in principle, produce — at the expense of bandwidth — a
replica of a higher quality than that provided by a spot-scan system when
the intensity of the original image is low. This higher quality is achieved by
making the noise generated in the low-level circuits of the transmitter

negligible.

Whether this improvement in quality can actually be realized in
practice, depends on the system parameters. (The value of m in Subsection 6.2
that gives the maximum replica signal-to-noise ratio depends on these para-
meters, as can be seen from (7-56). It also depends on the transmission time
(integration time) T permissible, which in turn depends on the speed at which
the images of the moving objects to be televised are moving. In effect,
practical considerations limit the speed v of the transmissivity patterns, and
hence also the maximum displacement of these patterns during T. Further-
more, since — as we have seen in Section 5 — these transmissivity patterns
must, in order to reduce '"confusion noise'’ be much longer than
those required to achieve a replica of a given quality in the case of a spot-scan
system. Consequently, an area-scan system cannot televise moving objects

at speeds as high as those which can be televised with a spot-scan system.

In deciding whether to use an area-scan system of the type we have
discussed in this report, we must first determine whether the required trans-
missivity-pattern speed is achievable. If it is, one must then examine the
system parameters to determine whether we are able to choose a near-optimum

value for the parameter m.

Mechanically scanning apertures offer, also in the case of an area-
scan system, a relatively light and reliable technique for providing colored

replicas — especially insofar as the transmitter is concerned. 1In this case,

9-1
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we must add —in addition to the items listed on page 8.1 — three '"quenching"
lamps of different color at the receiver to subtract an appropriate amount of
the dc component of the replica intensity distribution; we must also use an

integrating screen which can be quenched with these lamps,




